Skip to content

Spatial-Temporal Knowledge-Embedded Transformer for Video Scene Graph Generation (TIP 2024, ACM MM 2023)

Notifications You must be signed in to change notification settings

HCPLab-SYSU/STKET

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Spatial-Temporal Knowledge-Embedded Transformer for Video Scene Graph Generation

Implementation of papers:

Usage

Firstly, we download the directory of data and fasterRCNN in Yrcong' repository.

Then, we follow the instructions to compile some code for bbox operations.

cd lib/draw_rectangles
python setup.py build_ext --inplace
cd ..
cd fpn/box_intersections_cpu
python setup.py build_ext --inplace

For the object detector part, please follow the compilation from https://github.com/jwyang/faster-rcnn.pytorch

Citation

@article{Pu2024STKET,
  author={Pu, Tao and Chen, Tianshui and Wu, Hefeng and Lu, Yongyi and Lin, Liang},
  title={Spatial-Temporal Knowledge-Embedded Transformer for Video Scene Graph Generation},
  journal={IEEE Transactions on Image Processing},
  volume={33},
  pages={556-568},
  year={2024},
  publisher={IEEE},
  doi={10.1109/TIP.2023.3345652}
}

@inproceedings{Pu2023VidSGG,
  author={Pu, Tao},
  title={Video Scene Graph Generation with Spatial-Temporal Knowledge},
  booktitle={Proceedings of the 31st ACM International Conference on Multimedia},
  year={2023},
  pages={9340--9344},
  publisher={Association for Computing Machinery},
  doi={10.1145/3581783.3613433}
}

Contributors

For any questions, feel free to open an issue or contact us:

About

Spatial-Temporal Knowledge-Embedded Transformer for Video Scene Graph Generation (TIP 2024, ACM MM 2023)

Topics

Resources

Stars

Watchers

Forks