-
Notifications
You must be signed in to change notification settings - Fork 5
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
FDM: use reallife measured coefficients #69
Comments
Good find 👍 |
Got the Ebook, unfortunately only readable via the browser. (but much, much cheaper - it is a 800page book...) |
Signed-off-by: Heiko Schulz <Heiko Schulz>
With the input of the datas from the book, the aircraft behaves quite well, and feels really good. |
…y the dataset Signed-off-by: Heiko Schulz <Heiko Schulz>
Great 👍 |
Ouch ...doesn't like stormy monday yet. 🌬 |
And doesn't like the new autopilot settings either. Let me know if I should adjust the autopilot. |
…nstrated, 50ktn is too much - like in real life Signed-off-by: Heiko Schulz <Heiko Schulz>
Rest now calm in windy, turbulent weather. Needs a lot of rudder in crosswind, and not much aileron. But 50ktn is too much - the real one has been tested up to 21ktn. |
Please have a look at this: Too bad that Dornier prevented a publication of the drag scale but maybe it can be guessed: |
This is the lift/alpha curve from the wind tunnel test:
|
I wonder why all of your new table values are depending on mach speed. It does not look right to me that drag decreases with increasing speed. Are you sure that you mean:
and not:
|
The dataset shows coefficients for three situations D1, D2 and D3 for a given weight of 10500kg: Approach is specified with a flightpath of -3°, extracted gear and full flaps. Gear and flaps at approach explains the higher drag. I haven't included the flightpath in the table yet, but began today to filter out lift of flaps from the climb and cruise coefficients on may local system. I compared this new file with the source files mentioned in the ReadMe, especially the flightreport ""A better Pace setter" from flightGlobal and it comes nearly exact at the mentioned values. So the values I set in are true and valid. The way the data is structured in approach, climb and cruise is quite common. The datas of c172p and c182s based on uses a very similar dataset. I will send you the important pages of the books this weekend, unfortunately it is a Ebook, which is in a cloud. So I'm not able to copy the whole book 😞 |
OK, but then the high drag for low speeds is mainly caused by the flaps, gear and alpha, which is not considered here. So we must rather adjust the corresponding curves instead (cd_alpha, cd_gear, cd_flaps) to fit the specifications from your book. |
That's what I said, and there are no explicit datas for the flaps and gear. (but for cd_alpha)
Unfortunately that's not that easy. We do know that they are burried in Clalpha and Clzero/ Cdalpha and Cdzero: CLift = Clzero (Clzero + Clflapszero) + Clalpha (Clalpha + Clflapsalpha) + .... And we do know at which settings (climb/ approach/ cruise) had been investigated. (bold= unknown) So actually the coefficients of Clzero, Clalpha, Cdzero, Cdalpha etc... must be changed, so that we can create explicit forces for gear and flaps. Yesterday I think I was able to extract the flap coefficients from Clzero. But that's maybe not right yet. So there are known variabales and unknown variables.... |
Do you already have a CDalpha curve or should I extract it from the wind tunnel data? |
Here you can see the value of CDgear: |
I have aero/coefficient/CDalpha due to mach, which is more than good enough.
It is just for the fairing, not the extracted gear. Btw.:I tested your CLalpha curve, and used the CLzero to calculate CLFlaps. But the CLAlpha gives only values at 70m/sec, and tested in FlightGear shows me that the curve brings me not the correct AOA values I would expect, so I won't use it. I use CLalpha due to mach from the book, which gives me indeed the expected AOA values. |
Need someone who explains me how to deal with such curves, because I wonder why I don't get the AOA values who can expect.... |
??? AOA and alpha is the same and this is the input value. The lift force is the output value. Flaps shift this curve upwards (addition) and I guess the ground effect rotates this curve (multiplication). |
I tested your curve instead of the coefficients from the book, and jsbsim/ FGFS gave me much higher AOA at certain speeds then it should. I'm sure the curve is correct, but it seems something I miss when it doesn't provide enough lift.
First) MACH depends on temperature. |
What should the AOA values be? I get 2.7° at 3000ft altitude hold. |
which indicated airspeed? which weight? |
Example: At 29000ft at 190ktn IAS the aircraft should have an Body Pitch Angle of 2.5° and with that an wing-aoa of 4° with an weight of about 27000lbs |
I guess the wrong aoa has something to do with the pitch moments and not with the lift. Nevertheless thank you for the documents! Some of the values are a little strange in my opinion (e.g. cAalpha of 6.76 which is very high). I'm not sure how to proceed. |
Sorry for my late answer. Calpha 6.76 seems correct to me: The Dornier 328 uses the TNT wing of the Dornier 228, which had been designed to create much lift. Then the fueselage produces some extra lift (I read something in a old FlugRevue of my brother of 5% and more), and the Calpha of 6.76 is at approach with flaps full extracted. Alan Teeder answered, see: (https://sourceforge.net/p/jsbsim/mailman/message/35749344/), but I'm not yet sure if I understood him correct. I think I have to subtract longitudinal (pitch drag lift) effect of flap and undercarriage from one to case to other. I have to ask him if I'm right how I have done it here on my local system, by changing those values. |
From my understanding we should do the following for a nice FDM:
Do you agree or do you have a better idea? I know the problem is to distinguish between the different effects and I'm not sure if this will work. |
After digging a bit into aeroydynamics the last weeks I have to disagree 😞 Looking at the windtunnel data you found, I can see that study is only done to test those tripping devices and riblet films. The model used has no emepennage and no vertical and horizontal tail (p. 13), so the values are not realistic. The lift curve is only available for a speed of 70m/s = 136kts; and with tripping device. Drag polars are only available in a speed range of 50m/s to 90m/s = 97kts to 175kts. The data from Brockhaus has a larger speed range from approach at 53m/s =102kts to climb at 103m/s= 198kts to cruise at 144m/s = 279kts. I can also now answer why a lot of datas depends on mach speed. According to (NASA) above 250mph = 217kts mach compressibility comes into account:
The Dornier 328 has a much higher cruise speed than 250 mph, and the dataset takes mach compressibility into account. The only way I can use the lift curve is to determine the stall angle together with the known stall speeds better. |
The stuff they mounted on the wings had some effect on the drag but the influence on the lift was slim to none. The cl_alpha curve does more or less represent the quality of the airfoil and it is dimensionless. To get the lift force from the cl_alpha curve JSBsim multiplies it with the wing area and the pressure. The pressure is also calculated by JSBsim depending on the flight level and the mach speed so you don't need to care about this. Maybe the elevator has a slightly different cl_alpha curve but since the main lift is generated by the main airfoil this is not important. In my opinion the more input data we put into the FDM the better the result will be. |
When you disagree anyway, why do you ask me for my agreement? Below Mach 0.3 cl_alpha is dimensionsless. Above it will be affected by mach compressibility.
If that wouldn't be the case aircraft developing in real life would be very easy..... But no, jsbsim does not compute mach compressibilty itself - it needs a table for, since every aircraft differs. To quote Alan Teeter:
He also wrote in the wiki:
Believe it or not, but datasets from NASA for other aircraft gives all their values as due to mach. For some good reasons..... I don't see why using this simply
More garbage in, more garbage out. |
ok |
I made some tests with xflr5. Here are my input files: a5.dat
I got it from here: http://airfoiltools.com/airfoil/details?airfoil=doa5-il but the data was in a wrong order. wing.xwimp
Maybe this is helpful. |
Sorry, no. I had already tests done with JavaFoil, xflr5, Datcom+, the predicted curve by airfoiltoools and other software in the past years. Also has Michael Selig the coordinates of the airfoil as well. Again:
At least, to quote Alan Teeder, from the J3Cub-thread (https://forum.flightgear.org/viewtopic.php?f=4&t=28303&start=540#p315727), as they face a similar problem like we had:
And we do have have real data as provided by me above. And they do work and gives me finally the output I expected and are in line with those from the flight test reports. No need to struggle with predicted airfoils etc.... Real-life flight data > Wind Tunnel Tests >Datcom/ AVL > Aeromatic ! 😄 |
JSBsim doesn't work good by only seeing the wing. JSBSim needs to see the whole aircraft to work correct. |
In the end JDBSim just uses standard mechanical equations to put everything together and the question is what we should use for main lift and drag force (let's focus on this first because this is most important). Both forces are mainly depending on the AoA and air pressure (and wing area but this is constant) and currently I have no clue how you want to detemine these formulas. |
Das ist doch alles in den Coeffizienten von Brockhaus enthalten. Und die Tatsasche, dass das Flugzeug mit diesen Coeffizienten das macht, was es soll, zeigt mir, das diese viabel sind! Die 747-200 hat auch keine klassische Liftcurve, wie Du es Dir vorstellst - und fliegt sich trotzdem nach Handbuch! Das, was Du gerne hättest, zeigt nur die Extra 500. |
Vorschlag: |
Ich wollte nicht sagen, dass ich alles besser weiß, sondern nur verstehen, was Du konkret vorhast. |
Ich war ein bisschen blind. Der Offset steckt natürlich in "Lift_at_zero_alpha". Das kann man natürlich so machen, wobei ich mir nicht ganz sicher bin, woher all diese Werte kommen. |
Der "Offset" ist in der Tat Lift_at_zero_alpha. Das ist in der Aeroydynamic eine gängige Ausdrucksweise um eine Kurve zu beschreiben, die eben Nicht durch x= 0 geht. Ich kenne das auch von den Airfoils, die ich bei den Helis verwendet habe. Das Überziehen wird bei der 747-200 nicht genau abgebildet, da dafür offenbar die Werte/ Daten fehlen. Die Daten wurden ja in Zeiten kreiert, wo solche Extremfälle rechnerisch nur schwer zu erfassen waren. |
Aber auch in dem fdm, dass ich mit den Bockhaus-Coeffizienten erstellt habe, steckt eine klassische Lift-Curve dahinter: https://github.com/HHS81/do328/blob/Issue69/do328-300.xml
Auch hier wird mit alpha-rad multipliziert. Der Unterschied zu 747-200 ist, dass ich den Bodeneffekt nicht eingefügt habe. Der ist bei allen JSBSim-aircrafts ohnehin nur generic und damit eigentlich falsch 😆 . |
Man kann aber aus dem CLift-Coeffizienten, CLzero-Coeffizienten und alpha-rad auch eine Tabelle a la c172p erstellen.
Indem man für sich alpha-rad mit Brockhaus Cl-Coeffizienten multipliziert, Clzero dann dazuaddiert und das ganze in wie oben als Tabellenform darstellt. Es bleibt die Herausforderung, Clflaps etc. vorher rauszurechnen. Wie, hat ja Alan Teeder ja auf der JSBSim-Mailinglist ja beschrieben und wird meine Aufgabe, sobald ich das Cockpit fertig texturiert habe. |
Ist das der Auftrieb inklusive Landeklappen? Wenn ja, dann muss dieser Effekt da noch rausgerechnet werden, oder? Oder stecken die Landeklappen alleine in CA0? Ich bin mir auch nicht ganz sicher, was "Steigflug" bedeutet. Sind da noch Landeklappen 12° gesetzt? Und bedeutet CAalpha wirklich, dass diese Werte mit Alpha-Rad multipliziert den richtigen Auftrieb geben? Dann sind die 6.76 ja doch nicht so viel und entspricht in etwa dem, was ich für realistisch halte. |
Ja, inklusive Landerklappen, aber nur beim Approach.
Nein
Nein.
Beides Ja, wie ich ja sagte.
Ich habe noch keine Stalls eingebaut, darum ist es so einfach. Aber deshalb bin ich ja so sehr hinter realen Daten hinterher. Stall speeds: So, und wenn man das alles berücksichtigt und gegen die Daten aus dem Artikel "A better Pace setter" fliegt (abgesehen vom Treibstoffverbrauch - muss das noch korrigieren), passt das alles erstaunlich gut! |
So könnte man die Lift-Kurve aus dem Windtunnel in das FDM einbringen:
Auf diese Weise hätte man noch das Überziehen drin. Ansonsten habe noch das gefunden:
|
|
Was bedeutet dieses corrected-alpha und warum ist dieses notwendig? |
Meine Idee war es, doch die Lift-Kurve aus dem Windkanal zu nehmen. Daher habe ich sie entsprechend skaliert, sodass man sie einfach durch alpha-rad ersetzten kann. Allerdings tritt ein überziehen erst bei Alpha >15° auf, |
Wobei sich leider das Buch "Aerodynamic Design of Transport Aircraft" auch widerspricht. Auf Seite 538 ist von e=0.94 die Rede, was bei einer Flügelstreckung von 11 einem Induced_drag von 0.0308 entspricht. Auf Seite 542 ist der Induced_drag allerdings 0.0361. Ich gehe eher davon aus, dass die 0.0308 stimmen und man sich beim Eintragen in das Diagramm vertan hat, wobei ich mir nicht sicher bin. |
Die 0.0308 werden richtig sein. Ich vermute, dass man sich beim Eintragen in das Diagramm in der Zeile vertan hatte, da man nicht davon ausging, dass der induzierte Luftwiderstand der DO-328 so viel geringer als der von der Saab 340 ist. Dabei hat die Saab keine Winglets und im Gegensatz zur Dornier auch keine abgeschrägten Flügelenden. |
use real life measured coefficients from:
Brockhaus, R. (2013): Flugregelung. Physikalische Grundlagen. Mathematisches Flugzeugmodell. Auslegungskriterien-Regelungsstrukturen. Entwurf von Flugregelungssystemen. Entwicklungslinien. Springer Verlag Berlin Heidelberg GmbH
The text was updated successfully, but these errors were encountered: