This repository contains the implementation of the paper.
If you find our work useful, Please give us a star 🌟!
LiCROcc: Teach Radar for Accurate Semantic Occupancy Prediction using LiDAR and Camera
Yukai Ma1,2, Jianbiao Mei1,2, Xuemeng Yang2, Licheng Wen2, Weihua Xu1, Jiangning Zhang1, Botian Shi2,^, Yong Liu1,^, Xingxing Zuo3
1ZJU 2PJLab3TUM
^Corresponding Authors
We will release the code for radar SSC in this repo.
Please refer to SSC-RS
- spconv-cu111==2.1.25
- torch-scatter==2.0.8
- torchmetrics>=0.9.0
-Please refer to OpenOccupancy to prepare nuScenes dataset.
- Please refer to CRN to generate radar point cloud in BEV view.
python scripts/gen_radar_bev.py # accumulate sweeps and transform to LiDAR coords
Folder structure:
LiCROcc
├── data/
│ ├── nuscenes/
│ │ ├── maps/
│ │ ├── samples/
│ │ ├── sweeps/
│ │ ├── lidarseg/
│ │ ├── v1.0-test/
│ │ ├── v1.0-trainval/
│ │ ├── nuscenes_occ_infos_train.pkl/
│ │ ├── nuscenes_occ_infos_val.pkl/
│ │ ├── radar_bev_filter/
Download Teacher model here
Train RC-LiCROcc
./tools/dist_train.sh ./projects/configs/ssc_rs/ssc_rs_base_nuscenes_LC2LR123.py N_GPUs
Train R-LiCROcc
./tools/dist_train.sh ./projects/configs/ssc_rs/ssc_rs_base_nuscenes_LC2radar12.py N_GPUs
Eval RC-LiCROcc
./tools/dist_test.sh ./projects/configs/ssc_rs/ssc_rs_base_nuscenes_LC2LR123.py ./path/to/ckpts.pth N_GPUs
Eval R-LiCROcc
./tools/dist_test.sh ./projects/configs/ssc_rs/ssc_rs_base_nuscenes_LC2radar12.py ./path/to/ckpts.pth N_GPUs
coming soon
@misc{ma2024licroccteachradaraccurate,
title={LiCROcc: Teach Radar for Accurate Semantic Occupancy Prediction using LiDAR and Camera},
author={Yukai Ma and Jianbiao Mei and Xuemeng Yang and Licheng Wen and Weihua Xu and Jiangning Zhang and Botian Shi and Yong Liu and Xingxing Zuo},
year={2024},
eprint={2407.16197},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2407.16197},
}
We adopt the following open-sourced projects: