This is a multi-functional package to handle any sort of bids-conform dataset (CT, MRI, ...) It can find, filter, search any BIDS_Family and subjects, and has many functionalities, among them:
- Easily loop over datasets, and the required files
- Read, Write Niftys, centroid jsons, ...
- Reorient, Resample, Shift Niftys, Centroids, labels
- Modular 2D snapshot generation (different views, MIPs, ...)
- 3D Mesh generation from segmentation and snapshots from them
- Registration
- Logging everything consistently
- ...
conda create -n 3.10 python=3.10
conda activate 3.10
pip install TPTBox
(you should be in the project folder)
pip install poetry
poetry install
or: Develop mode is really, really nice:
pip install poetry
poetry install --with dev
Each folder in this package represents a different functionality.
The top-level-hierarchy incorporates the most important files, the BIDS_files.
This file builds a data model out of the BIDS file names.
It can load a dataset as a BIDS_Global_info file, from which search queries and loops over the dataset can be started.
See tutorial_BIDS_files.ipynb
for details.
Defines constants for the BIDS nomenclature (sequence-splitting keys, naming conventions...)
Contains definitions and sort order for our intern labels, for vertebrae, POI, ...
Example rotate and resample.
from TPTBox import NII
nii = NII.load("...path/xyz.nii.gz", seg=True)
# R right, L left
# S superior/up, I inferior/down
# A anterior/front, P posterior/back
img_rot = nii.reorient(axcodes_to=("P", "I", "R"))
img_scale = nii.rescale((1.5, 5, 1)) # in mm as currently rotated
# resample to an other image
img_resampled_to_other = nii.resample_from_to(img_scale)
nii.get_array() # get numpy array
nii.affine # Affine matrix
nii.header # NIFTY header
nii.orientation # Orientation in 3-Letters
nii.zoom # Scale of the three image axis
nii.shape #shape
Python function and script for arbitrary image stitching. See Details
For our Spine segmentation pipline follow the installation of SPINEPS.
SPINEPS will produce two mask: instance and semantic labels. With these we can compute our POIs. There are either center of mass points or surface points with bioloical meaning. See Validation of a Patient-Specific Musculoskeletal Model for Lumbar Load Estimation Generated by an Automated Pipeline From Whole Body CT
from TPTBox import NII, POI, Location, calc_poi_from_subreg_vert
from TPTBox.core.vert_constants import v_name2idx
p = "/dataset-DATASET/derivatives/A/"
semantic_nii = NII.load(f"{p}sub-A_sequ-stitched_acq-sag_mod-T2w_seg-spine_msk.nii.gz", seg=True)
instance_nii = NII.load(f"{p}sub-A_sequ-stitched_acq-sag_mod-T2w_seg-vert_msk.nii.gz", seg=True)
poi_path = f"{p}sub-A_sequ-stitched_acq-sag_mod-T2w_seg-spine_ctd.json"
poi = POI.load(poi_path)
poi = calc_poi_from_subreg_vert(
instance_nii,
semantic_nii,
# buffer_file=poi_path,
subreg_id=[
Location.Vertebra_Full,
Location.Arcus_Vertebrae,
Location.Spinosus_Process,
Location.Costal_Process_Left,
Location.Costal_Process_Right,
Location.Superior_Articular_Left,
Location.Superior_Articular_Right,
Location.Inferior_Articular_Left,
Location.Inferior_Articular_Right,
# Location.Vertebra_Corpus_border, CT only
Location.Vertebra_Corpus,
Location.Vertebra_Disc,
Location.Muscle_Inserts_Spinosus_Process,
Location.Muscle_Inserts_Transverse_Process_Left,
Location.Muscle_Inserts_Transverse_Process_Right,
Location.Muscle_Inserts_Vertebral_Body_Left,
Location.Muscle_Inserts_Vertebral_Body_Right,
Location.Muscle_Inserts_Articulate_Process_Inferior_Left,
Location.Muscle_Inserts_Articulate_Process_Inferior_Right,
Location.Muscle_Inserts_Articulate_Process_Superior_Left,
Location.Muscle_Inserts_Articulate_Process_Superior_Right,
Location.Ligament_Attachment_Point_Anterior_Longitudinal_Superior_Median,
Location.Ligament_Attachment_Point_Posterior_Longitudinal_Superior_Median,
Location.Ligament_Attachment_Point_Anterior_Longitudinal_Inferior_Median,
Location.Ligament_Attachment_Point_Posterior_Longitudinal_Inferior_Median,
Location.Additional_Vertebral_Body_Middle_Superior_Median,
Location.Additional_Vertebral_Body_Posterior_Central_Median,
Location.Additional_Vertebral_Body_Middle_Inferior_Median,
Location.Additional_Vertebral_Body_Anterior_Central_Median,
Location.Ligament_Attachment_Point_Anterior_Longitudinal_Superior_Left,
Location.Ligament_Attachment_Point_Posterior_Longitudinal_Superior_Left,
Location.Ligament_Attachment_Point_Anterior_Longitudinal_Inferior_Left,
Location.Ligament_Attachment_Point_Posterior_Longitudinal_Inferior_Left,
Location.Additional_Vertebral_Body_Middle_Superior_Left,
Location.Additional_Vertebral_Body_Posterior_Central_Left,
Location.Additional_Vertebral_Body_Middle_Inferior_Left,
Location.Additional_Vertebral_Body_Anterior_Central_Left,
Location.Ligament_Attachment_Point_Anterior_Longitudinal_Superior_Right,
Location.Ligament_Attachment_Point_Posterior_Longitudinal_Superior_Right,
Location.Ligament_Attachment_Point_Anterior_Longitudinal_Inferior_Right,
Location.Ligament_Attachment_Point_Posterior_Longitudinal_Inferior_Right,
Location.Additional_Vertebral_Body_Middle_Superior_Right,
Location.Additional_Vertebral_Body_Posterior_Central_Right,
Location.Additional_Vertebral_Body_Middle_Inferior_Right,
Location.Additional_Vertebral_Body_Anterior_Central_Right,
Location.Ligament_Attachment_Point_Flava_Superior_Median,
Location.Ligament_Attachment_Point_Flava_Inferior_Median,
Location.Vertebra_Direction_Posterior,
Location.Vertebra_Direction_Inferior,
Location.Vertebra_Direction_Right,
],
)
# poi.save(poi_path)
poi = poi.round(2)
print("Vertebra T4 Vertebra Corpus Center of mass:", poi[v_name2idx["T4"], Location.Vertebra_Corpus])
# rescale/reorante like nii
poi_new = poi.reorient(("P", "I", "R")).rescale((1, 1, 1))
poi_new = poi.resample_from_to(other_nii_or_poi)
The snapshot function automatically generates sag, cor, axial cuts in the center of a segmentation.
from TPTBox.spine.snapshot2D import Snapshot_Frame, create_snapshot
ct = Path("Path to CT")
mri = Path("Path to MRI")
vert = Path("Path to Vertebra segmentation")
subreg = Path("Path to Vertebra subregions")
poi_ct = Path("Path to Vertebra poi")
poi_mr = Path("Path to Vertebra poi")
ct_frame = Snapshot_Frame(image=ct, segmentation=vert, centroids=poi_ct, mode="CT", coronal=True, axial=True)
mr_frame = Snapshot_Frame(image=mri, segmentation=vert, centroids=poi_mr, mode="MRI", coronal=True, axial=True)
create_snapshot(snp_path="snapshot.jpg", frames=[ct_frame, mr_frame])
Requires additonal python packages: vtk fury xvfbwrapper
from TPTBox.mesh3D.snapshot3D import make_snapshot3D
# all segmentation; view give the rotation of an image
make_snapshot3D("sub-101000_msk.nii.gz","snapshot3D.png",view=["A", "L", "P", "R"])
# Select witch segmentation per panel are chosen.
make_snapshot3D("sub-101000_msk.nii.gz","snapshot3D_v2.png",view=["A"], ids_list=[[1,2],[3]])
TBD
TBD
Note
Notably, ...
Tip
A Tip
Important
Importantly