Skip to content

HenryYoon/thesis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

This repository (repo) contains source code for KIICE paper of mine.

In this paper, we present Transformer-based fact checking model which improves computational efficiency. Locality Sensitive Hashing (LSH) is employed to efficiently compute attention value so that it can reduce the computation time. With LSH, model can group semantically similar words, and compute attention value within the group. The performance of proposed model is 75% for accuracy, 42.9% and 75% for Fl micro score and F1 macro score, respectively.

As a result, we awarded best paper in 2021 KIICE spring conference.

Usage

Our code is written in Windows device. Please be aware of that.

First, you need to install required libraries with this command:

pip install -r requirements.txt

If you want to run our code, please input this command

python ./src/experiment.py

Tech Stack

  • Data: Pandas, Numpy, Scikit-learn, Requests, BeautifulSoup
  • Visualization: Plotly, Matplotlib
  • ML: Gensim, SciPy

License

GNU GENERAL PUBLIC © Hee Seung Yun

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages