Skip to content

HyunWookL/PM-MemNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Learning to Remember Patterns: Pattern Matching Memory Networks for Traffic Forecasting

This is a PyTorch implementation of the paper: Hyunwook Lee, Seungmin Jin, Hyeshin Chu, Hongkyu Lim, Sungahn Ko, Learning to Remember Patterns: Pattern Matching Memory Networks for Traffic Forecasting, ICLR 2022.

Requirements

python3
scipy>=0.19.0
numpy
pandas
pyyaml
torch>=1.9.0

Data Preparation

Download Datasets

The traffic data files for NAVER-Seoul is posted on Google Drive. The other datasets, including METR-LA, can be found in Google Drive or Baidu Yun links provided by Li et al..

Process Datasets

In the data processing stage, We have same process as Li et al.

# Create data directories
mkdir -p data/{METR-LA,PEMS-BAY,NAVER-Seoul}

# METR-LA
python generate_training_data.py --output_dir=data/METR-LA --traffic_df_fiilename=data/metr-la.h5 --seq_length_x INPUT_SEQ_LENGTH --seq_length_y PRED_SEQ_LENGTH

# PEMS-BAY
python generate_training_data.py --output_dir=data/PEMS-BAY --traffic_df_fiilename=data/pems-bay.h5 --seq_length_x INPUT_SEQ_LENGTH --seq_length_y PRED_SEQ_LENGTH

# NAVER-Seoul
python generate_training_data.py --output_dir=data/NAVER-Seoul --traffic_df_fiilename=data/naver-seoul.csv --seq_length_x INPUT_SEQ_LENGTH --seq_length_y PRED_SEQ_LENGTH

Model Training

Code and detailed instruction will be updated soon.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages