├── README.md
├── requirements.txt
├── datasets
│ └── nuscenes/ (see below explanation)
├── data
│ ├── ...
│ └── nuscenes.yaml
├── models
│ ├── ...
│ ├── yolo.py
│ └── yolo5n_nuscenes.yaml
├── utils
│ ├── ...
│ ├── dataloaders.py
│ └── loss.py
├── detect.py
├── debug.ipynb
└── train_simple.py
-
Prepare dataset (4.3GB, resized images with bbox labels, front camera only)
$ wget https://hyu-aue8088.s3.ap-northeast-2.amazonaws.com/nuscenes_det2d.tar.gz $ tar xzvf nuscenes_det2d.tar.gz
-
Create python virtual environment
$ python3 -m venv venv/aue8088-pa2 $ source venv/aue8088-pa2/bin/activate
-
Check whether the virtual environment set properly : The result should end with
venv/aue8088-pa2/bin/python
.$ which python
-
Clone base code repository (replace
ircvlab
toyour account
if you forked the repository)$ git clone https://github.com/ircvlab/aue8088-pa2
-
[!] Create a symbolic link for nuscenes dataset
-
Assume the below folder structure
├── nuscenes_det2d ├── aue8088-pa2 │ ├── data/ │ ├── models/ │ ├── train_simple.py │ ├── ... │ └── README.md (this file)
-
Follow below commands
$ cd aue8088-pa2 $ mkdir datasets $ ln -s $(realpath ../nuscenes_det2d) datasets/nuscenes $
-
-
Install required packages
$ pip install -r requirements.txt
- Command
$ python train_simple.py \ --img 416 \ --batch-size 64 \ --epochs 40 \ --data data/nuscenes.yaml \ --cfg models/yolov5n_nuscenes.yaml \ --weights yolov5n.pt \ --workers 16 \ --name yolov5n