Skip to content

Image-Py/planer-zoo

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

planer-store

Planer is a light-weight CNN framework implemented in pure Numpy-like interface. It can run only with Numpy. Or change different backends. (Cupy accelerated with CUDA, ClPy accelerated with OpenCL).

planer-store is a toolbox based on planer. Supportting many models, we can use them easily:

import planer_store as plas
model = plas.load_model('xxx')

model.xxx ...

crnn-ocr

import planer_store as plas
model = plas.load_model('crnn_ocr')

img = imread('planer.jpg')
text = model.recognize(img)

# show img and result

crnn-ocr

face-68-key

import planer_store as plas
model = plas.load_model('face_68_key')

face = imread('face.jpg')
rc = model.get_face_key(face)
thin = model.face_adjust(face, fac=-10)
fat = model.face_adjust(face, fac=10)

# show face, thin, fat

face-69key

hed-edge

import planer_store as plas
model = plas.load_model('hed_edge')

face = imread('edge.jpg')
edge = model.hed_edge(img)

# show face, edge

hed-edge

object-recognize

import planer_store as plas
model = plas.load_model('resnet18')

img = imread('bus.jpg')
obj = model.recognize(img)

# show img and result

object-recognize

high-resolution

import planer_store as plas
model = plas.load_model('ESRGAN')

img = imread('girl.jpg')
high = model.super_resolution(img)

# show img and high resolution result

high-resolution

cellpose

import planer_store as plas
model = plas.load_model('cellpose')

img = 255 - imread('cell.png')[:,:,0]
flow = count_flow(img)
lab = flow2msk(flow, level=0.2)
edge = draw_edge(img, lab)
rgb = rgb_mask(img, lab)

# show img, flow, edge, rgbmsk

cellpose

Contribution

welcom to contribute new models.

  1. use torch to train, and export as onnx
  2. planer.onnx2planer('xxx.onnx')

Releases

No releases published

Packages

No packages published

Languages