Planer is a light-weight CNN framework implemented in pure Numpy-like interface. It can run only with Numpy. Or change different backends. (Cupy accelerated with CUDA, ClPy accelerated with OpenCL).
planer-store is a toolbox based on planer. Supportting many models, we can use them easily:
import planer_store as plas
model = plas.load_model('xxx')
model.xxx ...
import planer_store as plas
model = plas.load_model('crnn_ocr')
img = imread('planer.jpg')
text = model.recognize(img)
# show img and result
import planer_store as plas
model = plas.load_model('face_68_key')
face = imread('face.jpg')
rc = model.get_face_key(face)
thin = model.face_adjust(face, fac=-10)
fat = model.face_adjust(face, fac=10)
# show face, thin, fat
import planer_store as plas
model = plas.load_model('hed_edge')
face = imread('edge.jpg')
edge = model.hed_edge(img)
# show face, edge
import planer_store as plas
model = plas.load_model('resnet18')
img = imread('bus.jpg')
obj = model.recognize(img)
# show img and result
import planer_store as plas
model = plas.load_model('ESRGAN')
img = imread('girl.jpg')
high = model.super_resolution(img)
# show img and high resolution result
import planer_store as plas
model = plas.load_model('cellpose')
img = 255 - imread('cell.png')[:,:,0]
flow = count_flow(img)
lab = flow2msk(flow, level=0.2)
edge = draw_edge(img, lab)
rgb = rgb_mask(img, lab)
# show img, flow, edge, rgbmsk
welcom to contribute new models.
- use torch to train, and export as onnx
- planer.onnx2planer('xxx.onnx')