Skip to content

data and codes of chapter structure recognition on PLOS ONE

Notifications You must be signed in to change notification settings

Ivan-Ji/chapter-structure-recognition

 
 

Repository files navigation

chapter-structure-recognition

data and codes of chapter structure recognition on PLOS ONE

中文:

  1. PLOS ONE原始语料:plosone_data.csv(Part1-3)
  2. 用于线性分类模型的tokens形式测试语料:test_data_for_linear_model文件夹
  3. 线性分类模型数据预处理及word2vec训练代码:liner_classic_dataprocess.py
  4. NB模型:NB_Plosone.py
  5. SVM模型:SVM_Plosone.py
  6. CRF模型:crf++ tools文件夹
  7. RNN模型组、Bi-LSTM模型组:RNNBiLSTMCRFATTENTION文件夹,需自行新建data、modeloutput、voc文件夹
  8. BERT模型:bert_ner文件夹,需自行新建Abs_data、output、pre_models文件夹
  9. BERT-Bi-LSTM-CRF模型:bert_lstm_crf文件夹,需自行新建Abs_data、output、pre_models文件夹
  10. IDCNN模型:IDCNN文件夹,需自行新建data、ckpt_IDCNN、log、result文件夹
  11. RNN、Bi-LSTM、IDCNN模型 tensorflow <= 1.8.0
  12. BERT、BERT-Bi-LSTM-CRF模型 tensorflow >= 1.12.0

English:

  1. PLOS ONE original data: plosone_data.csv(Part1-3)
  2. Test corpus of tokens for linear classification models: test_data_for_linear_model folder
  3. Linear classification model data preprocessing and word2vec training code: liner_classic_dataprocess.py
  4. NB model: NB_Plosone.py
  5. SVM model: SVM_Plosone.py
  6. CRF model: crf ++ tools folder
  7. RNN model group, Bi-LSTM model group: RNBBiLSTMCRFATTENTION folder, you need to create new data, modeloutput, voc folders by yourself
  8. BERT model: bert_ner folder, you need to create new Abs_data, output, pre_models folders by yourself
  9. BERT-Bi-LSTM-CRF model: bert_lstm_crf folder, you need to create new Abs_data, output, pre_models folders by yourself
  10. IDCNN model: IDCNN folder, you need to create new data, ckpt_IDCNN, log, result folders by yourself
  11. RNN, Bi-LSTM, IDCNN models tensorflow <= 1.8.0
  12. BERT, BERT-Bi-LSTM-CRF model tensorflow> = 1.12.0

About

data and codes of chapter structure recognition on PLOS ONE

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 95.5%
  • Perl 4.5%