Skip to content

Latest commit

 

History

History
38 lines (36 loc) · 1.8 KB

README.md

File metadata and controls

38 lines (36 loc) · 1.8 KB

deepLearningBook

deep learning 学习笔记

目录:
  • Table of Contents:更详细的目录列表
  • Acknowledgements
  • Notation: 使用到的符号说明
  • 1 Introduction:
  • Part I: Applied Math and Machine Learning Basics - 2 Linear Algebra - 3 Probability and Information Theory - 4 Numerical Computation - 5 Machine Learning Basics
  • Part II: Modern Practical Deep Networks - 6 Deep Feedforward Networks - 7 Regularization for Deep Learning - 8 Optimization for Training Deep Models - 9 Convolutional Networks - 10 Sequence Modeling: Recurrent and Recursive Nets - 11 Practical Methodology - 12 Applications
  • Part III: Deep Learning Research - 13 Linear Factor Models - 14 Autoencoders - 15 Representation Learning - 16 Structured Probabilistic Models for Deep Learning - 17 Monte Carlo Methods - 18 Confronting the Partition Function - 19 Approximate Inference - 20 Deep Generative Models