This project introduces GACFNet, a lightweight target detection network for aerial imagery, which proposes a new feature fusion module that enhances the correlation between non-adjacent layers ignored in the FPN-like feature fusion structure, thus compensating for the lost small target information in the FPN-like feature fusion structure. Considering that low-resolution feature maps retain less small-target information, we improved yolov8's backbone to retain more small-target information in low-resolution feature maps. It achieves 69.9 FPS on VisDrone dataset, DIOR dataset and UAVDT dataset, while the accuracy mAP value is higher than the state-of-the-art methods.
pip install ultralytics
yolo detect train data=E:/GACFNet/ultralytics-main/ultralytics/cfg/datasets/VisDrone.yaml model=E:/GACFNet/ultralytics-main/ultralytics/GACFNet.yaml pretrained=E:/GACFNet/ultralytics-main/ultralyticsyolov8s.pt epochs=150 imgsz=800 batch=4 workers=2`
yolo detect val model=E:/GACFNet/ultralytics-main/ultralytics/runs/train/NGIoU0.5/weights/best.pt data=E:/GACFNet/ultralytics-main/ultralytics/cfg/datasets/VisDrone.yaml
pyhon detect.py
yolo detect predict model=E:/GACFNet/ultralytics-main/ultralytics/runs/train/NGIoU0.5\weights\best.pt source=E:/xinVisDrone/images/val save=True conf=0.5
`