This repository is the official implementation of "Confidence Score for Source-Free Unsupervised Domain Adaptation", accepted in ICML 2022. This code refers to SHOT implementation.
Fix 'prefix' in environment.yaml file.
prefix: /home/[your_username]/anaconda3/env/CoWA
Then create the environment.
$ conda env create --file environment.yaml
You can download datasets here:
After downloading the datasets, create following files and directories in this directory.
$ mkdir ./data
data
└── VISDA-C
├── train_list.txt
└── validation_list.txt
Each list.txt file has (image_path, class index) pairs
./data/VISDA-C/train_list.txt
line 1 : /home/[username]/data/VisDA-2017/train/aeroplane/src_2_02691156_4def53f149137451b0009f08a96f38a9__44_349_150.png 0
line 2 : /home/[username]/data/VisDA-2017/train/aeroplane/src_1_02691156_5d0d3f54c5d9dd386a1aee7416e39fad__180_236_150.png 0
...
Then run a script file.
$ chmod +x run_visda.sh
$ ./run_visda.sh