An unoffcial implementation for "ML-Leaks: Model and Data Independent Membership Inference Attacks and Defenses on Machine Learning Models"
python=3.8.13
torch=1.12.0
torchvision=0.13.0
numpy=1.22.3
scikit-learn=1.2.0
python infer.py --dataset cifar10 --data_path '/path/to/your/data/' --num_epoch 50
Shadow model training
Testing Accuracy: 0.6127
More detailed results:
precision recall f1-score support
0 0.68 0.66 0.67 1263
1 0.71 0.74 0.73 1216
2 0.50 0.46 0.48 1257
3 0.42 0.44 0.43 1219
4 0.56 0.52 0.54 1294
5 0.51 0.49 0.50 1256
6 0.67 0.74 0.71 1261
7 0.67 0.64 0.65 1218
8 0.71 0.76 0.74 1258
9 0.68 0.68 0.68 1258
accuracy 0.61 12500
macro avg 0.61 0.61 0.61 12500
weighted avg 0.61 0.61 0.61 12500
Target model training
Testing Accuracy: 0.6105
More detailed results:
precision recall f1-score support
0 0.67 0.64 0.66 1259
1 0.68 0.75 0.71 1257
2 0.47 0.48 0.47 1216
3 0.44 0.42 0.43 1247
4 0.54 0.48 0.51 1202
5 0.52 0.53 0.53 1261
6 0.66 0.72 0.69 1275
7 0.70 0.66 0.68 1265
8 0.75 0.74 0.74 1278
9 0.66 0.68 0.67 1240
accuracy 0.61 12500
macro avg 0.61 0.61 0.61 12500
weighted avg 0.61 0.61 0.61 12500
Attacker of adversary 1 training
Testing Accuracy: 0.6939
More detailed results:
precision recall f1-score support
0 0.81 0.50 0.62 12500
1 0.64 0.88 0.74 12500
accuracy 0.69 25000
macro avg 0.73 0.69 0.68 25000
weighted avg 0.73 0.69 0.68 25000