Code for "IDLat: An Importance-Driven Latent Generation Method for Scientific Data", IEEE Transactions on Visualization and Computer Graphics (IEEE VIS 2022).
To train IDLat on Vortex dataset, run
mkdir ./results/vortex_600_beta5_a7
OUTDIR=./results/vortex_600_beta5_a7
python -u train.py --config=./configs/config_vortex.yaml --name=vortex_600_beta5_a7 --train > ${OUTDIR}/vortex_600_beta5_a7.log
To evalute IDLat on Vortex dataset and generate latent representations with uniform Importance Map (e.g., Importance value = 0.9), run
python eval.py --config=./configs/config_vortex.yaml \
--snapshot ./results/vortex_600_beta5_a7/snapshots/best.pt \
--tqdm \
--output_dir ./results/vortex_600_beta5_a7/outputs/ \
--map_value 0.9 \
--map_name 'uni09'
To evalute IDLat on Vortex dataset and generate latent representations with isosurface distance map (e.g., isovalue = 7), run
python eval.py --config=./configs/vortex/config_vortex2.yaml \
--snapshot ./results/vortex_600_beta5_a7/snapshots/best.pt \
--tqdm \
--output_dir ./results/vortex_600_beta5_a7/outputs/ \
--map_name 'iso7'
Please modify configure file as needed.
If you use this code for your research, please cite our paper.
@ARTICLE{shen2022IDLat,
title={IDLat: An Importance-Driven Latent Generation Method for Scientific Data},
author={Shen, Jingyi and Li, Haoyu and Xu, Jiayi and Biswas, Ayan and Shen, Han-Wei},
journal={IEEE Transactions on Visualization and Computer Graphics},
year={2022},
pages={1-11},
doi={10.1109/TVCG.2022.3209419}}