A detection framework for 3D medical images based on PyTorch refers to the modular design of MMDetection. The framework consists of one-stage and two-stage detectors. More methods, instructions, and experiment results will be updated.
- g++ 7.5
- gcc 7.5
- cuda > 10.1
- torch > 1.6.0
git clone https://github.com/TimothyZero/MedVision.git
cd MedVision
pip install .
git clone https://github.com/JoeeYF/MedDetection.git
cd MedDetection
python train.py --config config_path
bash run.sh config_name 1 1 1
Detectors
- Faster R-CNN
- Cascade R-CNN
- RetinaNet
- DeepLung
- CenterNet
- yolov4
Backbone
- ResNet
- ResNeXt
- SENet
- Res2Net
Neck
- FPN
- PAN
- BiFPN
DenseHead
- RetinaHead
- RPNHead
RoIHead
- BaseRoIHead
- DoubleHead
- CascadeHead
Other features
- OHEM
- 3D DCNv2
- 3D Soft-NMS
The annotation json files are in COCO format.
Detection/Luna2016
├── train_images_test
├── subset0
├── ....nii.gz
├── subset1
├── subset2
├── ...
├── subset9
├── infer_dataset_0.json
├── infer_dataset_1.json
├── infer_dataset_2.json
├── ...
├── infer_dataset_9.json
├── train_dataset_0.json
├── train_dataset_1.json
├── train_dataset_2.json
├── ...
└── train_dataset_9.json
- more methods support
- experiment results
- dataset structure