forked from bunchesofdonald/photohash
-
Notifications
You must be signed in to change notification settings - Fork 328
/
imagehash.py
626 lines (517 loc) · 22.1 KB
/
imagehash.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
"""
Image hashing library
======================
Example:
>>> from PIL import Image
>>> import imagehash
>>> hash = imagehash.average_hash(Image.open('test.png'))
>>> print(hash)
d879f8f89b1bbf
>>> otherhash = imagehash.average_hash(Image.open('other.bmp'))
>>> print(otherhash)
ffff3720200ffff
>>> print(hash == otherhash)
False
>>> print(hash - otherhash)
36
>>> for r in range(1, 30, 5):
... rothash = imagehash.average_hash(Image.open('test.png').rotate(r))
... print('Rotation by %d: %d Hamming difference' % (r, hash - rothash))
...
Rotation by 1: 2 Hamming difference
Rotation by 6: 11 Hamming difference
Rotation by 11: 13 Hamming difference
Rotation by 16: 17 Hamming difference
Rotation by 21: 19 Hamming difference
Rotation by 26: 21 Hamming difference
>>>
"""
from __future__ import (absolute_import, division, print_function)
from PIL import Image, ImageFilter
import numpy
#import scipy.fftpack
#import pywt
__version__ = "4.2.1"
"""
You may copy this file, if you keep the copyright information below:
Copyright (c) 2013-2020, Johannes Buchner
https://github.com/JohannesBuchner/imagehash
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""
def _binary_array_to_hex(arr):
"""
internal function to make a hex string out of a binary array.
"""
bit_string = ''.join(str(b) for b in 1 * arr.flatten())
width = int(numpy.ceil(len(bit_string)/4))
return '{:0>{width}x}'.format(int(bit_string, 2), width=width)
class ImageHash(object):
"""
Hash encapsulation. Can be used for dictionary keys and comparisons.
"""
def __init__(self, binary_array):
self.hash = binary_array
def __str__(self):
return _binary_array_to_hex(self.hash.flatten())
def __repr__(self):
return repr(self.hash)
def __sub__(self, other):
if other is None:
raise TypeError('Other hash must not be None.')
if self.hash.size != other.hash.size:
raise TypeError('ImageHashes must be of the same shape.', self.hash.shape, other.hash.shape)
return numpy.count_nonzero(self.hash.flatten() != other.hash.flatten())
def __eq__(self, other):
if other is None:
return False
return numpy.array_equal(self.hash.flatten(), other.hash.flatten())
def __ne__(self, other):
if other is None:
return False
return not numpy.array_equal(self.hash.flatten(), other.hash.flatten())
def __hash__(self):
# this returns a 8 bit integer, intentionally shortening the information
return sum([2**(i % 8) for i, v in enumerate(self.hash.flatten()) if v])
def __len__(self):
# Returns the bit length of the hash
return self.hash.size
def hex_to_hash(hexstr):
"""
Convert a stored hash (hex, as retrieved from str(Imagehash))
back to a Imagehash object.
Notes:
1. This algorithm assumes all hashes are either
bidimensional arrays with dimensions hash_size * hash_size,
or onedimensional arrays with dimensions binbits * 14.
2. This algorithm does not work for hash_size < 2.
"""
hash_size = int(numpy.sqrt(len(hexstr)*4))
#assert hash_size == numpy.sqrt(len(hexstr)*4)
binary_array = '{:0>{width}b}'.format(int(hexstr, 16), width = hash_size * hash_size)
bit_rows = [binary_array[i:i+hash_size] for i in range(0, len(binary_array), hash_size)]
hash_array = numpy.array([[bool(int(d)) for d in row] for row in bit_rows])
return ImageHash(hash_array)
def hex_to_flathash(hexstr, hashsize):
hash_size = int(len(hexstr)*4 / (hashsize))
binary_array = '{:0>{width}b}'.format(int(hexstr, 16), width=hash_size * hashsize)
hash_array = numpy.array([[bool(int(d)) for d in binary_array]])[-hash_size * hashsize:]
return ImageHash(hash_array)
def old_hex_to_hash(hexstr, hash_size=8):
"""
Convert a stored hash (hex, as retrieved from str(Imagehash))
back to a Imagehash object. This method should be used for
hashes generated by ImageHash up to version 3.7. For hashes
generated by newer versions of ImageHash, hex_to_hash should
be used instead.
"""
l = []
count = hash_size * (hash_size // 4)
if len(hexstr) != count:
emsg = 'Expected hex string size of {}.'
raise ValueError(emsg.format(count))
for i in range(count // 2):
h = hexstr[i*2:i*2+2]
v = int("0x" + h, 16)
l.append([v & 2**i > 0 for i in range(8)])
return ImageHash(numpy.array(l))
def average_hash(image, hash_size=8, mean=numpy.mean):
"""
Average Hash computation
Implementation follows http://www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html
Step by step explanation: https://web.archive.org/web/20171112054354/https://www.safaribooksonline.com/blog/2013/11/26/image-hashing-with-python/
@image must be a PIL instance.
@mean how to determine the average luminescence. can try numpy.median instead.
"""
if hash_size < 2:
raise ValueError("Hash size must be greater than or equal to 2")
# reduce size and complexity, then covert to grayscale
image = image.convert("L").resize((hash_size, hash_size), Image.ANTIALIAS)
# find average pixel value; 'pixels' is an array of the pixel values, ranging from 0 (black) to 255 (white)
pixels = numpy.asarray(image)
avg = mean(pixels)
# create string of bits
diff = pixels > avg
# make a hash
return ImageHash(diff)
def phash(image, hash_size=8, highfreq_factor=4):
"""
Perceptual Hash computation.
Implementation follows http://www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html
@image must be a PIL instance.
"""
if hash_size < 2:
raise ValueError("Hash size must be greater than or equal to 2")
import scipy.fftpack
img_size = hash_size * highfreq_factor
image = image.convert("L").resize((img_size, img_size), Image.ANTIALIAS)
pixels = numpy.asarray(image)
dct = scipy.fftpack.dct(scipy.fftpack.dct(pixels, axis=0), axis=1)
dctlowfreq = dct[:hash_size, :hash_size]
med = numpy.median(dctlowfreq)
diff = dctlowfreq > med
return ImageHash(diff)
def phash_simple(image, hash_size=8, highfreq_factor=4):
"""
Perceptual Hash computation.
Implementation follows http://www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html
@image must be a PIL instance.
"""
import scipy.fftpack
img_size = hash_size * highfreq_factor
image = image.convert("L").resize((img_size, img_size), Image.ANTIALIAS)
pixels = numpy.asarray(image)
dct = scipy.fftpack.dct(pixels)
dctlowfreq = dct[:hash_size, 1:hash_size+1]
avg = dctlowfreq.mean()
diff = dctlowfreq > avg
return ImageHash(diff)
def dhash(image, hash_size=8):
"""
Difference Hash computation.
following http://www.hackerfactor.com/blog/index.php?/archives/529-Kind-of-Like-That.html
computes differences horizontally
@image must be a PIL instance.
"""
# resize(w, h), but numpy.array((h, w))
if hash_size < 2:
raise ValueError("Hash size must be greater than or equal to 2")
image = image.convert("L").resize((hash_size + 1, hash_size), Image.ANTIALIAS)
pixels = numpy.asarray(image)
# compute differences between columns
diff = pixels[:, 1:] > pixels[:, :-1]
return ImageHash(diff)
def dhash_vertical(image, hash_size=8):
"""
Difference Hash computation.
following http://www.hackerfactor.com/blog/index.php?/archives/529-Kind-of-Like-That.html
computes differences vertically
@image must be a PIL instance.
"""
# resize(w, h), but numpy.array((h, w))
image = image.convert("L").resize((hash_size, hash_size + 1), Image.ANTIALIAS)
pixels = numpy.asarray(image)
# compute differences between rows
diff = pixels[1:, :] > pixels[:-1, :]
return ImageHash(diff)
def whash(image, hash_size = 8, image_scale = None, mode = 'haar', remove_max_haar_ll = True):
"""
Wavelet Hash computation.
based on https://www.kaggle.com/c/avito-duplicate-ads-detection/
@image must be a PIL instance.
@hash_size must be a power of 2 and less than @image_scale.
@image_scale must be power of 2 and less than image size. By default is equal to max
power of 2 for an input image.
@mode (see modes in pywt library):
'haar' - Haar wavelets, by default
'db4' - Daubechies wavelets
@remove_max_haar_ll - remove the lowest low level (LL) frequency using Haar wavelet.
"""
import pywt
if image_scale is not None:
assert image_scale & (image_scale - 1) == 0, "image_scale is not power of 2"
else:
image_natural_scale = 2**int(numpy.log2(min(image.size)))
image_scale = max(image_natural_scale, hash_size)
ll_max_level = int(numpy.log2(image_scale))
level = int(numpy.log2(hash_size))
assert hash_size & (hash_size-1) == 0, "hash_size is not power of 2"
assert level <= ll_max_level, "hash_size in a wrong range"
dwt_level = ll_max_level - level
image = image.convert("L").resize((image_scale, image_scale), Image.ANTIALIAS)
pixels = numpy.asarray(image) / 255.
# Remove low level frequency LL(max_ll) if @remove_max_haar_ll using haar filter
if remove_max_haar_ll:
coeffs = pywt.wavedec2(pixels, 'haar', level = ll_max_level)
coeffs = list(coeffs)
coeffs[0] *= 0
pixels = pywt.waverec2(coeffs, 'haar')
# Use LL(K) as freq, where K is log2(@hash_size)
coeffs = pywt.wavedec2(pixels, mode, level = dwt_level)
dwt_low = coeffs[0]
# Substract median and compute hash
med = numpy.median(dwt_low)
diff = dwt_low > med
return ImageHash(diff)
def colorhash(image, binbits=3):
"""
Color Hash computation.
Computes fractions of image in intensity, hue and saturation bins:
* the first binbits encode the black fraction of the image
* the next binbits encode the gray fraction of the remaining image (low saturation)
* the next 6*binbits encode the fraction in 6 bins of saturation, for highly saturated parts of the remaining image
* the next 6*binbits encode the fraction in 6 bins of saturation, for mildly saturated parts of the remaining image
@binbits number of bits to use to encode each pixel fractions
"""
# bin in hsv space:
intensity = numpy.asarray(image.convert("L")).flatten()
h, s, v = [numpy.asarray(v).flatten() for v in image.convert("HSV").split()]
# black bin
mask_black = intensity < 256 // 8
frac_black = mask_black.mean()
# gray bin (low saturation, but not black)
mask_gray = s < 256 // 3
frac_gray = numpy.logical_and(~mask_black, mask_gray).mean()
# two color bins (medium and high saturation, not in the two above)
mask_colors = numpy.logical_and(~mask_black, ~mask_gray)
mask_faint_colors = numpy.logical_and(mask_colors, s < 256 * 2 // 3)
mask_bright_colors = numpy.logical_and(mask_colors, s > 256 * 2 // 3)
c = max(1, mask_colors.sum())
# in the color bins, make sub-bins by hue
hue_bins = numpy.linspace(0, 255, 6+1)
if mask_faint_colors.any():
h_faint_counts, _ = numpy.histogram(h[mask_faint_colors], bins=hue_bins)
else:
h_faint_counts = numpy.zeros(len(hue_bins) - 1)
if mask_bright_colors.any():
h_bright_counts, _ = numpy.histogram(h[mask_bright_colors], bins=hue_bins)
else:
h_bright_counts = numpy.zeros(len(hue_bins) - 1)
# now we have fractions in each category (6*2 + 2 = 14 bins)
# convert to hash and discretize:
maxvalue = 2**binbits
values = [min(maxvalue-1, int(frac_black * maxvalue)), min(maxvalue-1, int(frac_gray * maxvalue))]
for counts in list(h_faint_counts) + list(h_bright_counts):
values.append(min(maxvalue-1, int(counts * maxvalue * 1. / c)))
# print(values)
bitarray = []
for v in values:
bitarray += [v // (2**(binbits-i-1)) % 2**(binbits-i) > 0 for i in range(binbits)]
return ImageHash(numpy.asarray(bitarray).reshape((-1, binbits)))
class ImageMultiHash(object):
"""
This is an image hash containing a list of individual hashes for segments of the image.
The matching logic is implemented as described in Efficient Cropping-Resistant Robust Image Hashing
"""
def __init__(self, hashes):
self.segment_hashes = hashes
def __eq__(self, other):
if other is None:
return False
return self.matches(other)
def __ne__(self, other):
return not self.matches(other)
def __sub__(self, other, hamming_cutoff=None, bit_error_rate=None):
matches, sum_distance = self.hash_diff(other, hamming_cutoff, bit_error_rate)
max_difference = len(self.segment_hashes)
if matches == 0:
return max_difference
max_distance = matches * len(self.segment_hashes[0])
tie_breaker = 0 - (float(sum_distance) / max_distance)
match_score = matches + tie_breaker
return max_difference - match_score
def __hash__(self):
return hash(tuple(hash(segment) for segment in self.segment_hashes))
def __str__(self):
return ",".join(str(x) for x in self.segment_hashes)
def __repr__(self):
return repr(self.segment_hashes)
def hash_diff(self, other_hash, hamming_cutoff=None, bit_error_rate=None):
"""
Gets the difference between two multi-hashes, as a tuple. The first element of the tuple is the number of
matching segments, and the second element is the sum of the hamming distances of matching hashes.
NOTE: Do not order directly by this tuple, as higher is better for matches, and worse for hamming cutoff.
:param other_hash: The image multi hash to compare against
:param hamming_cutoff: The maximum hamming distance to a region hash in the target hash
:param bit_error_rate: Percentage of bits which can be incorrect, an alternative to the hamming cutoff. The
default of 0.25 means that the segment hashes can be up to 25% different
"""
# Set default hamming cutoff if it's not set.
if hamming_cutoff is None and bit_error_rate is None:
bit_error_rate = 0.25
if hamming_cutoff is None:
hamming_cutoff = len(self.segment_hashes[0]) * bit_error_rate
# Get the hash distance for each region hash within cutoff
distances = []
for segment_hash in self.segment_hashes:
lowest_distance = min(
segment_hash - other_segment_hash
for other_segment_hash in other_hash.segment_hashes
)
if lowest_distance > hamming_cutoff:
continue
distances.append(lowest_distance)
return len(distances), sum(distances)
def matches(self, other_hash, region_cutoff=1, hamming_cutoff=None, bit_error_rate=None):
"""
Checks whether this hash matches another crop resistant hash, `other_hash`.
:param other_hash: The image multi hash to compare against
:param region_cutoff: The minimum number of regions which must have a matching hash
:param hamming_cutoff: The maximum hamming distance to a region hash in the target hash
:param bit_error_rate: Percentage of bits which can be incorrect, an alternative to the hamming cutoff. The
default of 0.25 means that the segment hashes can be up to 25% different
"""
matches, _ = self.hash_diff(other_hash, hamming_cutoff, bit_error_rate)
return matches >= region_cutoff
def best_match(self, other_hashes, hamming_cutoff=None, bit_error_rate=None):
"""
Returns the hash in a list which is the best match to the current hash
:param other_hashes: A list of image multi hashes to compare against
:param hamming_cutoff: The maximum hamming distance to a region hash in the target hash
:param bit_error_rate: Percentage of bits which can be incorrect, an alternative to the hamming cutoff.
Defaults to 0.25 if unset, which means the hash can be 25% different
"""
return min(
other_hashes,
key=lambda other_hash: self.__sub__(other_hash, hamming_cutoff, bit_error_rate)
)
def _find_region(remaining_pixels, segmented_pixels):
"""
Finds a region and returns a set of pixel coordinates for it.
:param remaining_pixels: A numpy bool array, with True meaning the pixels are remaining to segment
:param segmented_pixels: A set of pixel coordinates which have already been assigned to segment. This will be
updated with the new pixels added to the returned segment.
"""
in_region = set()
not_in_region = set()
# Find the first pixel in remaining_pixels with a value of True
available_pixels = numpy.transpose(numpy.nonzero(remaining_pixels))
start = tuple(available_pixels[0])
in_region.add(start)
new_pixels = in_region.copy()
while True:
try_next = set()
# Find surrounding pixels
for pixel in new_pixels:
x, y = pixel
neighbours = [
(x-1, y),
(x+1, y),
(x, y-1),
(x, y+1)
]
try_next.update(neighbours)
# Remove pixels we have already seen
try_next.difference_update(segmented_pixels, not_in_region)
# If there's no more pixels to try, the region is complete
if not try_next:
break
# Empty new pixels set, so we know whose neighbour's to check next time
new_pixels = set()
# Check new pixels
for pixel in try_next:
if remaining_pixels[pixel]:
in_region.add(pixel)
new_pixels.add(pixel)
segmented_pixels.add(pixel)
else:
not_in_region.add(pixel)
return in_region
def _find_all_segments(pixels, segment_threshold, min_segment_size):
"""
Finds all the regions within an image pixel array, and returns a list of the regions.
Note: Slightly different segmentations are produced when using pillow version 6 vs. >=7, due to a change in
rounding in the greyscale conversion.
:param pixels: A numpy array of the pixel brightnesses.
:param segment_threshold: The brightness threshold to use when differentiating between hills and valleys.
:param min_segment_size: The minimum number of pixels for a segment.
"""
img_width, img_height = pixels.shape
# threshold pixels
threshold_pixels = pixels > segment_threshold
unassigned_pixels = numpy.full(pixels.shape, True, dtype=bool)
segments = []
already_segmented = set()
# Add all the pixels around the border outside the image:
already_segmented.update([(-1, z) for z in range(img_height)])
already_segmented.update([(z, -1) for z in range(img_width)])
already_segmented.update([(img_width, z) for z in range(img_height)])
already_segmented.update([(z, img_height) for z in range(img_width)])
# Find all the "hill" regions
while numpy.bitwise_and(threshold_pixels, unassigned_pixels).any():
remaining_pixels = numpy.bitwise_and(threshold_pixels, unassigned_pixels)
segment = _find_region(remaining_pixels, already_segmented)
# Apply segment
if len(segment) > min_segment_size:
segments.append(segment)
for pix in segment:
unassigned_pixels[pix] = False
# Invert the threshold matrix, and find "valleys"
threshold_pixels_i = numpy.invert(threshold_pixels)
while len(already_segmented) < img_width * img_height:
remaining_pixels = numpy.bitwise_and(threshold_pixels_i, unassigned_pixels)
segment = _find_region(remaining_pixels, already_segmented)
# Apply segment
if len(segment) > min_segment_size:
segments.append(segment)
for pix in segment:
unassigned_pixels[pix] = False
return segments
def crop_resistant_hash(
image,
hash_func=None,
limit_segments=None,
segment_threshold=128,
min_segment_size=500,
segmentation_image_size=300
):
"""
Creates a CropResistantHash object, by the algorithm described in the paper "Efficient Cropping-Resistant Robust
Image Hashing". DOI 10.1109/ARES.2014.85
This algorithm partitions the image into bright and dark segments, using a watershed-like algorithm, and then does
an image hash on each segment. This makes the image much more resistant to cropping than other algorithms, with
the paper claiming resistance to up to 50% cropping, while most other algorithms stop at about 5% cropping.
Note: Slightly different segmentations are produced when using pillow version 6 vs. >=7, due to a change in
rounding in the greyscale conversion. This leads to a slightly different result.
:param image: The image to hash
:param hash_func: The hashing function to use
:param limit_segments: If you have storage requirements, you can limit to hashing only the M largest segments
:param segment_threshold: Brightness threshold between hills and valleys. This should be static, putting it between
peak and trough dynamically breaks the matching
:param min_segment_size: Minimum number of pixels for a hashable segment
:param segmentation_image_size: Size which the image is resized to before segmentation
"""
if hash_func is None:
hash_func = dhash
orig_image = image.copy()
# Convert to gray scale and resize
image = image.convert("L").resize((segmentation_image_size, segmentation_image_size), Image.ANTIALIAS)
# Add filters
image = image.filter(ImageFilter.GaussianBlur()).filter(ImageFilter.MedianFilter())
pixels = numpy.array(image).astype(numpy.float32)
segments = _find_all_segments(pixels, segment_threshold, min_segment_size)
# If there are no segments, have 1 segment including the whole image
if not segments:
full_image_segment = {(0, 0), (segmentation_image_size-1, segmentation_image_size-1)}
segments.append(full_image_segment)
# If segment limit is set, discard the smaller segments
if limit_segments:
segments = sorted(segments, key=lambda s: len(s), reverse=True)[:limit_segments]
# Create bounding box for each segment
hashes = []
for segment in segments:
orig_w, orig_h = orig_image.size
scale_w = float(orig_w) / segmentation_image_size
scale_h = float(orig_h) / segmentation_image_size
min_y = min(coord[0] for coord in segment) * scale_h
min_x = min(coord[1] for coord in segment) * scale_w
max_y = (max(coord[0] for coord in segment)+1) * scale_h
max_x = (max(coord[1] for coord in segment)+1) * scale_w
# Compute robust hash for each bounding box
bounding_box = orig_image.crop((min_x, min_y, max_x, max_y))
hashes.append(hash_func(bounding_box))
# Show bounding box
# im_segment = image.copy()
# for pix in segment:
# im_segment.putpixel(pix[::-1], 255)
# im_segment.show()
# bounding_box.show()
return ImageMultiHash(hashes)