-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_avcap.py
336 lines (266 loc) · 14.9 KB
/
run_avcap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import wandb
import argparse
import os
os.environ['MPLCONFIGDIR'] = './plt/'
import ast
import sys
import time
import torch
import numpy as np
import json
import warnings
import importlib
import torch.distributed as dist
import torch.multiprocessing as mp
import distutils
basepath = os.path.dirname(os.path.dirname(sys.path[0]))
sys.path.append(basepath)
from collections import OrderedDict
from models.AVCap import get_avcap_model
from models.cav_mae import CAVMAEFT
from dataloader import AVCapDataset, collate_fn
from transformers import BertTokenizer
from trainer import ModelTrainer, WrappedModel
from pycocotools.coco import COCO
from pycocoevalcap.eval import COCOEvalCap
## ===== ===== ===== ===== ===== ===== ===== =====
## Parse arguments
## ===== ===== ===== ===== ===== ===== ===== =====
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--gpu', type=str, default='0', help='gpu id to use')
# dataset
parser.add_argument("--data-train", type=str, default='dataset/train.json', help="training data json")
parser.add_argument("--data-val", type=str, default='dataset/test.json', help="validation data json")
parser.add_argument("--ann_file", type=str, default='dataset/test_coco.json', help="annotation file path")
parser.add_argument("--torch2iid_file", type=str, default='dataset/torch2iid.json', help="torch2iid file path")
parser.add_argument("--dataset", type=str, default="audiocaps", help="the dataset used", choices=["audiocaps"])
parser.add_argument("--dataset_mean", type=float, default= -4.346, help="the dataset mean, used for input normalization")
parser.add_argument("--dataset_std", type=float, default= 4.332, help="the dataset std, used for input normalization")
parser.add_argument("--n_class", type=int, default=527, help="number of classes")
# config
parser.add_argument("--target_length", default=1024, type=int, help="the input length in frames")
parser.add_argument("--noise", help='if use balance sampling', type=ast.literal_eval)
parser.add_argument("--modality_specific_depth", type=int, default=11, help="modality specific encoder's depth")
parser.add_argument("--num_frames", type=int, default=1, help="number of frame to use")
parser.add_argument("--mode", type=str, default='captioning', help="number of frame to use")
parser.add_argument('--no_training_pos', action='store_true', help='training positional embedding')
# training
parser.add_argument('--lr', '--learning-rate', default=5e-5, type=float, metavar='LR', help='initial learning rate')
parser.add_argument('--weight_decay', type=float, default=5e-7, help='Weight decay in the optimizer')
parser.add_argument('--batch-size', default=48, type=int, metavar='N', help='mini-batch size')
parser.add_argument('--num-workers', default=32, type=int, metavar='NW', help='# of workers for dataloading (default: 32)')
parser.add_argument('--max_epoch', type=int, default=50, help='Maximum number of epochs')
parser.add_argument('--warmup_epoch', type=int, default=1, help='warmup epoch for cosine lr scheduler')
# not used in the formal experiments, only in preliminary experiments
parser.add_argument("--metrics", type=str, default="mAP", help="the main evaluation metrics in finetuning", choices=["mAP", "acc"])
parser.add_argument("--loss", type=str, default="BCE", help="the loss function for finetuning, depend on the task", choices=["BCE", "CE"])
parser.add_argument('--warmup', help='if use warmup learning rate scheduler', type=ast.literal_eval, default='True')
parser.add_argument('--freqm', help='frequency mask max length', type=int, default=48)
parser.add_argument('--timem', help='time mask max length', type=int, default=192)
parser.add_argument('--label_smooth', type=float, default=0.1, help='label smoothing')
## Accelerate training
parser.add_argument('--port', type=str,default="8887", help='Port for distributed training, input as text')
parser.add_argument('--distributed', type=lambda x:bool(distutils.util.strtobool(x)), default=True, help='Enable distributed training')
parser.add_argument('--mixedprec', type=lambda x:bool(distutils.util.strtobool(x)), default=True, help='Enable mixed precision training')
## Load and save
parser.add_argument("--av_pretrain_path", type=str, default='pretrained_weights/cav-mae-scale++.pth', help="audio visual encoder pretrained model path")
parser.add_argument("--text_pretrain_path", type=str, default='pretrained_weights/model_git_base.pt', help="text decoder pretrained model path")
parser.add_argument('--save_path', type=str, default=None, help='Path for model and logs')
parser.add_argument('--model_save_freq', type=int, default=2, help='Frequency of saving model weight')
parser.add_argument("--pretrained_model", type=str, default=None, help="pretrained model path")
parser.add_argument('--freeze_av', action='store_true', help='freeze av encoder')
parser.add_argument('--freeze_text', action='store_true', help='freeze text encoder')
parser.add_argument("--train_base_path", type=str, default='dataset/audiocaps/train', help="train directory path")
parser.add_argument("--test_base_path", type=str, default='dataset/audiocaps/test', help="test directory path")
## Logging
parser.add_argument('--no_wandb', action='store_true', help='Disable WandB logging')
parser.add_argument('--wandb_project', type=str, default=None, help='wandb project')
parser.add_argument('--wandb_entity', type=str, default=None, help='wandb entity')
parser.add_argument('--wandb_name', type=str, default=None, help='wandb name')
parser.add_argument('--print_freq', default=10, type=int, help='print frequency')
args = parser.parse_args()
# all exp in this work is based on 224 * 224 image
im_res = 224
audio_conf = {'num_mel_bins': 128, 'target_length': args.target_length, 'freqm': args.freqm, 'timem': args.timem,
'dataset': args.dataset, 'mode':'train',
'mean':args.dataset_mean, 'std':args.dataset_std, 'noise':args.noise,
'label_smooth': args.label_smooth, 'im_res': im_res}
val_audio_conf = {'num_mel_bins': 128, 'target_length': args.target_length, 'freqm': 0, 'timem': 0,
'dataset': args.dataset, 'mode':'eval',
'mean': args.dataset_mean, 'std': args.dataset_std, 'noise': False, 'im_res': im_res}
def verbose_print(gpu, print_phrase):
if gpu == 0: print(print_phrase)
def main_worker(gpu, ngpus_per_node, args):
args.gpu = gpu
# Write input hyperparameters to score file
if args.gpu == 0:
scorefile = open(args.result_save_path+"/scores.txt", "a+")
scorefile.write('{} script executed\n'.format(time.strftime("%Y-%m-%d %H:%M:%S")))
print('\n=================args=================')
scorefile.write('\n=================args=================\n')
for items in vars(args):
print(items, vars(args)[items])
scorefile.write('{}: {}\n'.format(items, vars(args)[items]))
scorefile.flush()
# Initialize wandb
if args.gpu == 0 and not args.no_wandb:
wandb.init(project=args.wandb_project, entity=args.wandb_entity, config=args, resume='allow', name=args.wandb_name)
# Make an instance of the model
verbose_print(args.gpu, '\n=================Define Model=================')
av_model = CAVMAEFT(label_dim=args.n_class,
modality_specific_depth=args.modality_specific_depth,
num_frames=args.num_frames,
tr_pos=not args.no_training_pos)
if args.av_pretrain_path is not None:
av_state_dict = torch.load(args.av_pretrain_path, map_location=torch.device('cpu'))
new_state_dict = OrderedDict()
for k, v in av_state_dict.items():
name = k[7:]
new_state_dict[name] = v
if args.num_frames > 1 and (('patch_embed_v' in name) or ('pos_embed_v' in name)):
del new_state_dict[name]
miss, unexpected = av_model.load_state_dict(new_state_dict, strict=False)
verbose_print(args.gpu, 'now load cav-mae pretrained weights from ' + args.av_pretrain_path)
# verbose_print(args.gpu, miss)
# verbose_print(args.gpu, unexpected)
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True)
param = {'mode':args.mode}
model = get_avcap_model(tokenizer, av_model, param)
text_state_dict = torch.load(args.text_pretrain_path, map_location=torch.device('cpu'))['model']
if 'base' in args.text_pretrain_path:
new_state_dict = OrderedDict()
for k, v in text_state_dict.items():
name = k[7:] # 'module.' 문자열 제거
new_state_dict[name] = v
miss, unexpected = model.load_state_dict(new_state_dict, strict=False)
elif 'large' in args.text_pretrain_path:
del text_state_dict['textual.visual_projection.0.weight']
miss, unexpected = model.load_state_dict(text_state_dict, strict=False)
else:
raise NotImplementedError
verbose_print(args.gpu, 'now load git pretrained weights from ' + args.text_pretrain_path)
# verbose_print(args.gpu, miss)
# verbose_print(args.gpu, unexpected)
if args.distributed:
os.environ['MASTER_ADDR']='localhost'
os.environ['MASTER_PORT']=args.port
dist.init_process_group(backend='nccl', world_size=ngpus_per_node, rank=args.gpu)
torch.cuda.set_device(args.gpu)
model.cuda(args.gpu)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
print('Loaded the model on GPU {:d}'.format(args.gpu))
else:
model = WrappedModel(model).cuda(args.gpu)
# Initialise dataset
verbose_print(args.gpu, '\n=================Load Dataset=================')
train_dataset = AVCapDataset(args.data_train, base_path = args.train_base_path,
num_frames = args.num_frames, audio_conf=audio_conf)
val_dataset = AVCapDataset(args.data_val, base_path = args.test_base_path,
num_frames = args.num_frames, audio_conf=val_audio_conf)
if args.distributed:
verbose_print(args.gpu,'balanced sampler is not used in distributed setting')
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset, rank=args.gpu, drop_last=True)
val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset, rank=args.gpu, drop_last=True)
else:
verbose_print(args.gpu,'balanced sampler is not used in not distributed setting')
train_sampler = None
val_sampler = None
train_loader = torch.utils.data.DataLoader(
train_dataset,
sampler=train_sampler,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=True,
shuffle=(train_sampler is None),
drop_last=True,
collate_fn = collate_fn,
persistent_workers=True,
)
val_loader = torch.utils.data.DataLoader(
val_dataset,
sampler=val_sampler,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=False,
shuffle=False,
drop_last=False,
collate_fn = collate_fn,
persistent_workers=True,
)
args.iteration_per_epoch = len(train_loader)
# Define the ModelTrainer
verbose_print(args.gpu, '\n=================Parameter of the Model=================')
trainer = ModelTrainer(model, **vars(args))
# Start first epoch
epoch = 1
# Load model parameters
verbose_print(args.gpu, f'\n=================Load Model - pretrained model =================')
if args.pretrained_model is not None:
trainer.loadParameters(args.pretrained_model)
verbose_print(args.gpu, f"Model {args.pretrained_model} loaded from previous state!")
else:
verbose_print(args.gpu, "Note you are finetuning a model without any finetuning.")
best_metric, best_loss = -np.inf, np.inf
# Run training
for epoch in range(epoch,args.max_epoch+1):
if args.distributed:
train_sampler.set_epoch(epoch)
val_sampler.set_epoch(epoch)
verbose_print(args.gpu, f'\n=============================================================')
verbose_print(args.gpu, f'\n{time.strftime("%Y-%m-%d %H:%M:%S")} Train Epoch {epoch}')
train_stats = trainer.train_network(train_loader, evalmode=False, epoch=epoch)
dist.barrier()
verbose_print(args.gpu, f'\n{time.strftime("%Y-%m-%d %H:%M:%S")} Eval Epoch {epoch}')
with torch.no_grad():
result_json = trainer.train_network(val_loader, evalmode=True, epoch=epoch)
json_save_path = args.result_save_path + "/epoch" + str(epoch) +"_coco.json"
if args.gpu ==0:
with open(json_save_path, 'w') as f:
json.dump(result_json, f)
coco = COCO(args.ann_file)
coco_result = coco.loadRes(json_save_path)
coco_eval = COCOEvalCap(coco, coco_result)
coco_eval.params['image_id'] = coco_result.getImgIds()
coco_eval.evaluate()
print(f'==============EPOCH {epoch}/{args.max_epoch}=============\n')
stats = {}
for metric, score in coco_eval.eval.items():
print(f'{metric}: {score:.3f}')
stats[metric] = score
print('validation finished')
if not args.no_wandb:
wandb.log(stats)
trainer.saveParameters(args.model_save_path+f"/model_lastest_ft.pth")
if epoch % args.model_save_freq == 0:
print(time.strftime("%Y-%m-%d %H:%M:%S"), "Saving model {:d}".format(epoch))
trainer.saveParameters(args.model_save_path+f"/model_{epoch}_ft.pth");
if args.gpu == 0:
scorefile.close()
## ===== ===== ===== ===== ===== ===== ===== =====
## Main function
## ===== ===== ===== ===== ===== ===== ===== =====
def main():
args.save_path = os.path.join('/data/exp', args.save_path)
i_try = 3
while os.path.exists(args.save_path):
if not 'try' in args.save_path:
args.save_path += '_try2'
else:
new_path = args.save_path.replace(args.save_path.split('_')[-1], f'try{i_try}')
args.save_path = new_path
i_try += 1
args.model_save_path = args.save_path+"/model"
args.result_save_path = args.save_path+"/result"
os.makedirs(args.model_save_path, exist_ok=True)
os.makedirs(args.result_save_path, exist_ok=True)
n_gpus = torch.cuda.device_count()
print('Python Version:', sys.version)
print('PyTorch Version:', torch.__version__)
print('Number of GPUs:', torch.cuda.device_count())
print('Save path:',args.save_path)
if args.distributed:
mp.spawn(main_worker, nprocs=n_gpus, args=(n_gpus, args))
else:
main_worker(0, None, args)
if __name__ == '__main__':
main()