-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
506 lines (424 loc) · 16.9 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
import numpy as np
from numpy import dot
from numpy.linalg import norm
import os
from scipy import stats
import shutil
from sklearn import metrics
import torch
from torch import Tensor
import torch.distributed as dist
import torch.autograd as autograd
from typing import TypeVar, Optional, Iterator, Sequence
from torch.utils.data import Dataset, Sampler, DistributedSampler
from PIL import ImageFilter
import math
# __all__ = ["DistributedSamplerWrapper", "DistributedWeightedSampler"]
T_co = TypeVar('T_co', covariant=True)
class WeightedRandomSampler(Sampler[int]):
r"""Samples elements from ``[0,..,len(weights)-1]`` with given probabilities (weights).
Args:
weights (sequence) : a sequence of weights, not necessary summing up to one
num_samples (int): number of samples to draw
replacement (bool): if ``True``, samples are drawn with replacement.
If not, they are drawn without replacement, which means that when a
sample index is drawn for a row, it cannot be drawn again for that row.
generator (Generator): Generator used in sampling.
Example:
>>> list(WeightedRandomSampler([0.1, 0.9, 0.4, 0.7, 3.0, 0.6], 5, replacement=True))
[4, 4, 1, 4, 5]
>>> list(WeightedRandomSampler([0.9, 0.4, 0.05, 0.2, 0.3, 0.1], 5, replacement=False))
[0, 1, 4, 3, 2]
"""
weights: Tensor
num_samples: int
replacement: bool
def __init__(self, weights: Sequence[float], num_samples: int,
replacement: bool = True, generator=None) -> None:
if not isinstance(num_samples, int) or isinstance(num_samples, bool) or \
num_samples <= 0:
raise ValueError("num_samples should be a positive integer "
"value, but got num_samples={}".format(num_samples))
if not isinstance(replacement, bool):
raise ValueError("replacement should be a boolean value, but got "
"replacement={}".format(replacement))
self.weights = torch.as_tensor(weights, dtype=torch.double)
self.num_samples = num_samples
self.replacement = replacement
self.generator = generator
def __iter__(self) -> Iterator[int]:
rand_tensor = torch.multinomial(self.weights, self.num_samples, self.replacement, generator=self.generator)
yield from iter(rand_tensor.tolist())
def __len__(self) -> int:
return self.num_samples
class DistributedSamplerWrapper(DistributedSampler):
def __init__(
self, sampler, dataset,
num_replicas=None,
rank=None,
shuffle: bool = True):
super(DistributedSamplerWrapper, self).__init__(
dataset, num_replicas, rank, shuffle)
# source: @awaelchli https://github.com/PyTorchLightning/pytorch-lightning/issues/3238
self.sampler = sampler
def __iter__(self):
if self.sampler.generator is None:
self.sampler.generator = torch.Generator()
self.sampler.generator.manual_seed(self.seed + self.epoch)
indices = list(self.sampler)
if self.epoch == 0:
print(f"\n DistributedSamplerWrapper : {indices[:10]} \n\n")
indices = indices[self.rank:self.total_size:self.num_replicas]
return iter(indices)
class DistributedWeightedSampler(Sampler):
weights: Tensor
num_samples: int
replacement: bool
#dataset_train, samples_weight, num_replicas=num_tasks, rank=global_rank
def __init__(self, dataset: Dataset, weights: Sequence[float], num_replicas: Optional[int] = None,
rank: Optional[int] = None, replacement: bool = True, shuffle: bool = True,
seed: int = 0, drop_last: bool = False) -> None:
if num_replicas is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
num_replicas = dist.get_world_size()
if rank is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
rank = dist.get_rank()
if rank >= num_replicas or rank < 0:
raise ValueError(
"Invalid rank {}, rank should be in the interval"
" [0, {}]".format(rank, num_replicas - 1))
self.dataset = dataset
self.num_replicas = num_replicas
self.rank = rank
self.epoch = 0
self.drop_last = drop_last
if self.drop_last and len(self.dataset) % self.num_replicas != 0: # type: ignore[arg-type]
# Split to nearest available length that is evenly divisible.
# This is to ensure each rank receives the same amount of data when
# using this Sampler.
self.num_samples = math.ceil(
(len(self.dataset) - self.num_replicas) / self.num_replicas # type: ignore[arg-type]
)
else:
self.num_samples = math.ceil(len(self.dataset) / self.num_replicas) # type: ignore[arg-type]
self.total_size = self.num_samples * self.num_replicas
self.replacement = replacement
self.weights = torch.from_numpy(weights)
self.shuffle = shuffle
self.seed = seed
def __iter__(self) -> Iterator[T_co]:
# deterministically shuffle based on epoch
if self.shuffle:
g = torch.Generator()
g.manual_seed(self.seed + self.epoch)
indices = torch.randperm(len(self.dataset), generator=g).tolist()
else:
indices = list(range(len(self.dataset)))
if not self.drop_last:
# add extra samples to make it evenly divisible
padding_size = self.total_size - len(indices)
if padding_size <= len(indices):
indices += indices[:padding_size]
else:
indices += (indices * math.ceil(padding_size / len(indices)))[:padding_size]
else:
indices = indices[:self.total_size]
assert len(indices) == self.total_size
# subsample
indices = indices[self.rank:self.total_size:self.num_replicas]
assert len(indices) == self.num_samples
# # get targets (you can alternatively pass them in __init__, if this op is expensive)
# targets = self.dataset.targets
# # select only the wanted targets for this subsample
# targets = torch.tensor(targets)[indices]
# assert len(targets) == self.num_samples
# # randomly sample this subset, producing balanced classes
# weights = self.calculate_weights(targets)
weights = self.weights[indices]
subsample_rand_tensor = torch.multinomial(weights, self.num_samples, self.replacement)
# now map these target indicies back to the original dataset index...
dataset_indices = torch.tensor(indices)[subsample_rand_tensor]
return iter(dataset_indices.tolist())
# return iter(indices)
def __len__(self) -> int:
return self.num_samples
def set_epoch(self, epoch) -> None:
self.epoch = epoch
def off_diagonal(x):
n, m = x.shape
assert n == m
return x.flatten()[:-1].view(n - 1, n + 1)[:, 1:].flatten()
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def get_world_size():
if not is_dist_avail_and_initialized():
return 1
return dist.get_world_size()
def get_rank():
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
def is_main_process():
return get_rank() == 0
def save_on_master(state, is_best, output_dir):
if is_main_process():
ckpt_path = f'{output_dir}/checkpoint.pt'
best_path = f'{output_dir}/checkpoint_best.pt'
torch.save(state, ckpt_path)
if is_best:
shutil.copyfile(ckpt_path, best_path)
def init_distributed_mode(args):
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
args.rank = int(os.environ["RANK"])
args.world_size = int(os.environ['WORLD_SIZE'])
args.gpu = int(os.environ['LOCAL_RANK'])
elif 'SLURM_PROCID' in os.environ:
args.rank = int(os.environ['SLURM_PROCID'])
args.gpu = args.rank % torch.cuda.device_count()
else:
print('Not using distributed mode')
args.distributed = False
return
args.distributed = True
torch.cuda.set_device(args.gpu)
args.dist_backend = 'nccl'
print('| distributed init (rank {}): {}'.format(
args.rank, args.dist_url), flush=True)
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
torch.distributed.barrier()
setup_for_distributed(args.rank == 0)
def scaled_all_reduce(tensors, is_scale=True):
"""Performs the scaled all_reduce operation on the provided tensors.
The input tensors are modified in-place. Currently supports only the sum
reduction operator. The reduced values are scaled by the inverse size of the
world size.
"""
world_size = get_world_size()
# There is no need for reduction in the single-proc case
if world_size == 1:
return tensors
# Queue the reductions
reductions = []
for tensor in tensors:
reduction = dist.all_reduce(tensor, async_op=True)
reductions.append(reduction)
# Wait for reductions to finish
for reduction in reductions:
reduction.wait()
# Scale the results
if is_scale:
for tensor in tensors:
tensor.mul_(1.0 / world_size)
return tensors
def all_gather_batch(tensors):
"""
Performs all_gather operation on the provided tensors.
"""
# Queue the gathered tensors
world_size = get_world_size()
# There is no need for reduction in the single-proc case
if world_size == 1:
return tensors
tensor_list = []
output_tensor = []
for tensor in tensors:
tensor_all = [torch.ones_like(tensor) for _ in range(world_size)]
dist.all_gather(
tensor_all,
tensor,
async_op=False # performance opt
)
tensor_list.append(tensor_all)
for tensor_all in tensor_list:
output_tensor.append(torch.cat(tensor_all, dim=0))
return output_tensor
class GatherLayer(autograd.Function):
"""
Gather tensors from all workers with support for backward propagation:
This implementation does not cut the gradients as torch.distributed.all_gather does.
"""
@staticmethod
def forward(ctx, x):
output = [torch.zeros_like(x) for _ in range(dist.get_world_size())]
dist.all_gather(output, x)
return tuple(output)
@staticmethod
def backward(ctx, *grads):
all_gradients = torch.stack(grads)
dist.all_reduce(all_gradients)
return all_gradients[dist.get_rank()]
def all_gather_batch_with_grad(tensors):
"""
Performs all_gather operation on the provided tensors.
Graph remains connected for backward grad computation.
"""
# Queue the gathered tensors
world_size = get_world_size()
# There is no need for reduction in the single-proc case
if world_size == 1:
return tensors
tensor_list = []
output_tensor = []
for tensor in tensors:
tensor_all = GatherLayer.apply(tensor)
tensor_list.append(tensor_all)
for tensor_all in tensor_list:
output_tensor.append(torch.cat(tensor_all, dim=0))
return output_tensor
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def cat(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def synchronize(self):
if not is_dist_avail_and_initialized():
return
t = torch.tensor([self.sum, self.count], dtype=torch.float64, device='cuda')
dist.barrier()
dist.all_reduce(t)
t = t.tolist()
if math.isnan(t[0]):
# import pdb; pdb.set_trace()
self.sum = 1e9
else:
self.sum = int(t[0])
self.count = t[1]
self.avg = self.sum / self.count
def __str__(self):
# import pdb; pdb.set_trace()
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries))
return entries
def synchronize(self):
for meter in self.meters:
meter.synchronize()
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.reshape(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
# Calculate the Metrics for event classification
def d_prime(auc):
standard_normal = stats.norm()
d_prime = standard_normal.ppf(auc) * np.sqrt(2.0)
return d_prime
def calculate_stats(output, target):
"""Calculate statistics including mAP, AUC, etc.
Args:
output: 2d array, (samples_num, classes_num)
target: 2d array, (samples_num, classes_num)
Returns:
stats: list of statistic of each class.
"""
classes_num = target.shape[-1]
stats = []
output = output.cpu()
target = target.cpu()
# Accuracy, only used for single-label classification such as esc-50, not for multiple label one such as AudioSet
acc = metrics.accuracy_score(np.argmax(target, 1), np.argmax(output, 1))
# Class-wise statistics
for k in range(classes_num):
# Average precision
avg_precision = metrics.average_precision_score(
target[:, k], output[:, k], average=None)
# AUC
try:
auc = metrics.roc_auc_score(target[:, k], output[:, k], average=None)
# Precisions, recalls
(precisions, recalls, thresholds) = metrics.precision_recall_curve(
target[:, k], output[:, k])
# FPR, TPR
(fpr, tpr, thresholds) = metrics.roc_curve(target[:, k], output[:, k])
save_every_steps = 1000 # Sample statistics to reduce size
dict = {'precisions': precisions[0::save_every_steps],
'recalls': recalls[0::save_every_steps],
'AP': avg_precision,
'fpr': fpr[0::save_every_steps],
'fnr': 1. - tpr[0::save_every_steps],
'auc': auc,
# note acc is not class-wise, this is just to keep consistent with other metrics
'acc': acc
}
except:
dict = {'precisions': -1,
'recalls': -1,
'AP': avg_precision,
'fpr': -1,
'fnr': -1,
'auc': -1,
# note acc is not class-wise, this is just to keep consistent with other metrics
'acc': acc
}
print('class {:s} no true sample'.format(str(k)))
stats.append(dict)
return stats
### for retrieval task
def get_similarity(a, b):
cos_sim = dot(a, b) / (norm(a) * norm(b))
return cos_sim
# get mean
def get_sim_mat(a, b):
B = a.shape[0]
sim_mat = np.empty([B, B])
for i in range(B):
for j in range(B):
sim_mat[i, j] = get_similarity(a[i, :], b[j, :])
return sim_mat
def compute_metrics(x):
sx = np.sort(-x, axis=1)
d = np.diag(-x)
d = d[:, np.newaxis]
ind = sx - d
ind = np.where(ind == 0)
ind = ind[1]
metrics = {}
metrics['R1'] = float(np.sum(ind == 0)) / len(ind)
metrics['R5'] = float(np.sum(ind < 5)) / len(ind)
metrics['R10'] = float(np.sum(ind < 10)) / len(ind)
metrics['MR'] = np.median(ind) + 1
return metrics