-
Notifications
You must be signed in to change notification settings - Fork 43
/
gaussjacobi.jl
654 lines (566 loc) · 19 KB
/
gaussjacobi.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
@doc raw"""
gaussjacobi(n::Integer, α::Real, β::Real) -> x, w # nodes, weights
Return nodes `x` and weights `w` of [Gauss-Jacobi quadrature](https://en.wikipedia.org/wiki/Gauss%E2%80%93Jacobi_quadrature)
for exponents `α` and `β`.
```math
\int_{-1}^{1} f(x) (1-x)^\alpha(1+x)^\beta dx \approx \sum_{i=1}^{n} w_i f(x_i)
```
# Examples
```jldoctest
julia> x, w = gaussjacobi(3, 1/3, -1/3);
julia> f(x) = x^4;
julia> I = dot(w, f.(x));
julia> I ≈ 268π/729(√3)
true
```
"""
function gaussjacobi(n::Integer, α::Real, β::Real)
#GAUSS-JACOBI QUADRATURE NODES AND WEIGHTS
if n < 0
throw(DomainError(n, "gaussjacobi($n,$α,$β) not defined: n must be non-negative."))
elseif α == 0. && β == 0.
gausslegendre(n)
elseif α == -0.5 && β == -0.5
gausschebyshevt(n)
elseif α == 0.5 && β == 0.5
gausschebyshevu(n)
elseif α == -0.5 && β == 0.5
gausschebyshevv(n)
elseif α == 0.5 && β == -0.5
gausschebyshevw(n)
elseif n == 0
Float64[], Float64[]
elseif n == 1
[(β - α) / (α + β + 2)], [2^(α + β + 1) * beta(α + 1, β + 1)]
elseif min(α,β) ≤ -1.
throw(DomainError((α,β), "The Jacobi parameters correspond to a nonintegrable weight function"))
elseif n ≤ 100 && max(α,β) < 5.
jacobi_rec(n, α, β)
elseif n > 100 && max(α,β) < 5.
jacobi_asy(n, α, β)
elseif n ≤ 4000 && max(α,β) ≥ 5.
jacobi_gw(n, α, β)
else
error("gaussjacobi($n,$α,$β) is not implemented: n must be ≤ 4000 for max(α,β) ≥ 5.")
end
end
# Convenience function: convert any kind of numbers a and b to a joint floating point type
jacobi_rec(n::Integer, α::Real, β::Real) = jacobi_rec(n, promote(float(α), float(β))...)
jacobi_asy(n::Integer, α::Real, β::Real) = jacobi_asy(n, promote(float(α), float(β))...)
function jacobi_rec(n::Integer, α::T, β::T) where {T <: AbstractFloat}
#Compute nodes and weights using recurrrence relation.
x11, x12 = HalfRec(n, α, β, 1)
x21, x22 = HalfRec(n, β, α, 0)
x = Array{T}(undef,n)
w = Array{T}(undef,n)
m1 = length(x11)
m2 = length(x21)
sum_w = zero(T)
@inbounds for i in 1:m2
idx = m2 + 1 - i
xi = -x21[i]
der = x22[i]
wi = 1 / ((1 - xi^2) * der^2)
w[idx] = wi
x[idx] = xi
sum_w += wi
end
@inbounds for i in 1:m1
idx = m2 + i
xi = x11[i]
der = x12[i]
wi = 1 / ((1 - xi^2) * der^2)
w[idx] = wi
x[idx] = xi
sum_w += wi
end
c = (2^(α+β+1)*gamma(2+α)*gamma(2+β)/(gamma(2+α+β)*(α+1)*(β+1)))
rmul!(w, c / sum_w)
return x, w
end
function HalfRec(n::Integer, α::T, β::T, flag) where {T <: AbstractFloat}
# HALFREC Jacobi polynomial recurrence relation.
# Asymptotic formula - only valid for positive x.
r = (flag == 1) ? (ceil(n / 2):-1:1) : (floor(n / 2):-1:1)
m = length(r)
c1 = 1 / (2 * n + α + β + 1)
a1 = one(T)/4 - α^2
b1 = one(T)/4 - β^2
c1² = c1^2
x = Array{T}(undef,m)
@inbounds for i in 1:m
C = muladd(2*one(T), r[i], α - one(T)/2) * (T(π) * c1)
C_2 = C/2
x[i] = cos(muladd(c1², muladd(-b1, tan(C_2), a1 * cot(C_2)), C))
end
P1 = Array{T}(undef,m)
P2 = Array{T}(undef,m)
# Loop until convergence:
for _ in 1:10
innerjacobi_rec!(n, x, α, β, P1, P2)
dx2 = 0.0
@inbounds for i in 1:m
dx = P1[i] / P2[i]
_dx2 = abs2(dx)
dx2 = ifelse(_dx2 > dx2, _dx2, dx2)
x[i] = x[i] - dx
end
dx2 > eps(T) / 1e6 || break
end
# Once more for derivatives:
innerjacobi_rec!(n, x, α, β, P1, P2)
return x, P2
end
function innerjacobi_rec!(n, x, α::T, β::T, P, PP) where {T <: AbstractFloat}
# EVALUATE JACOBI POLYNOMIALS AND ITS DERIVATIVE USING THREE-TERM RECURRENCE.
N = length(x)
@inbounds for j = 1:N
xj = x[j]
Pj = (α - β + (α + β + 2) * xj)/2
Pm1 = one(T)
PPj = (α + β + 2)/2
PPm1 = zero(T)
for k in 1:n-1
k0 = muladd(2*one(T), k, α + β)
k1 = k0 + 1
k2 = k0 + 2
A = 2 * (k + 1) * (k + (α + β + 1)) * k0
B = k1 * (α^2 - β^2)
C = k0 * k1 * k2
D = 2 * (k + α) * (k + β) * k2
c1 = muladd(C, xj, B)
Pm1, Pj = Pj, muladd(-D, Pm1, c1 * Pj) / A
PPm1, PPj = PPj, muladd(c1, PPj, muladd(-D, PPm1, C * Pm1)) / A
end
P[j] = Pj
PP[j] = PPj
end
nothing
end
function weightsConstant(n, α, β)
# Compute the constant for weights:
M = min(20, n - 1)
C = 1.0
p = -α * β / n
for m = 1:M
C += p
p *= -(m + α) * (m + β) / (m + 1) / (n - m)
abs(p / C) < eps(Float64) / 100 && break
end
return 2^(α + β + 1) * C
end
function jacobi_asy(n::Integer, α::Float64, β::Float64)
# ASY Compute nodes and weights using asymptotic formulae.
# Determine switch between interior and boundary regions:
nbdy = 10
bdyidx1 = n - (nbdy - 1):n
bdyidx2 = nbdy:-1:1
# Interior formula:
x, w = asy1(n, α, β, nbdy)
# Boundary formula (right):
xbdy = asy2(n, α, β, nbdy)
x[bdyidx1], w[bdyidx1] = xbdy
# Boundary formula (left):
if α ≠ β
xbdy = asy2(n, β, α, nbdy)
end
x[bdyidx2] = -xbdy[1]
w[bdyidx2] = xbdy[2]
rmul!(w, weightsConstant(n, α, β))
return x, w
end
function asy1(n::Integer, α::Float64, β::Float64, nbdy::Integer)
# Algorithm for computing nodes and weights in the interior.
# Approximate roots via asymptotic formula: (Gatteschi and Pittaluga, 1985)
K = π*(2(n:-1:1).+α.-0.5)/(2n+α+β+1)
tt = K .+ (1/(2n+α+β+1)^2).*((0.25-α^2).*cot.(K/2).-(0.25-β^2).*tan.(K/2))
# First half (x > 0):
t = tt[tt .≤ π/2]
mint = t[end-nbdy+1]
idx = 1:max(findfirst(t .< mint)-1, 1)
# Newton iteration
for _ in 1:10
vals, ders = feval_asy1(n, α, β, t, idx) # Evaluate
dt = vals./ders
t += dt # Next iterate
if norm(dt[idx],Inf) < sqrt(eps(Float64))/100
break
end
end
vals, ders = feval_asy1(n, α, β, t, idx) # Once more for luck
t += vals./ders
# Store
x_right = cos.(t)
w_right = 1 ./ ders.^2
# Second half (x < 0):
α, β = β, α
t = π .- tt[1:(n-length(x_right))]
mint = t[nbdy]
idx = max(findfirst(t .> mint), 1):length(t)
# Newton iteration
for _ in 1:10
vals, ders = feval_asy1(n, α, β, t, idx) # Evaluate.
dt = vals./ders # Newton update.
t += dt
if norm(dt[idx],Inf) < sqrt(eps(Float64))/100
break
end
end
vals, ders = feval_asy1(n, α, β, t, idx) # Once more for luck.
t += vals./ders # Newton update.
# Store
x_left = cos.(t)
w_left = 1 ./ ders.^2
return vcat(-x_left, x_right), vcat(w_left, w_right)
end
"""
Evaluate the interior asymptotic formula at x = cos(t).
Assumption:
* `length(t) == n ÷ 2`
"""
function feval_asy1(n::Integer, α::Float64, β::Float64, t::AbstractVector, idx)
# Number of terms in the expansion:
M = 20
# Number of elements in t:
N = length(t)
# The sine and cosine terms:
A = repeat((2n+α+β).+(1:M),1,N).*repeat(t',M)/2 .- (α+1/2)*π/2 # M × N matrix
cosA = cos.(A)
sinA = sin.(A)
sinT = repeat(sin.(t)',M)
cosT = repeat(cos.(t)',M)
cosA2 = cosA.*cosT .+ sinA.*sinT
sinA2 = sinA.*cosT .- cosA.*sinT
sinT = hcat(ones(N), cumprod(repeat((csc.(t/2)/2),1,M-1), dims=2)) # M × N matrix
secT = sec.(t/2)/2
_vec = [(α+j-1/2)*(-α+j-1/2)/(2n+α+β+j+1)/j for j in 1:M-1]
P1 = [1;cumprod(_vec)]
P1[3:4:end] = -P1[3:4:end]
P1[4:4:end] = -P1[4:4:end]
P2 = Matrix(1.0I, M, M)
for l in 1:M
_vec = [(β+j-1/2)*(-β+j-1/2)/(2n+α+β+j+l)/j for j in 1:M-l-2]
P2[l,l+1:M-2] = cumprod(_vec)
end
PHI = repeat(P1,1,M).*P2
_vec = [(α+j-1/2)*(-α+j-1/2)/(2n+α+β+j-1)/j for j in 1:M-1]
P1 = [1;cumprod(_vec)]
P1[3:4:end] = -P1[3:4:end]
P1[4:4:end] = -P1[4:4:end]
P2 = Matrix(1.0I, M, M)
for l in 1:M
_vec = [(β+j-1/2)*(-β+j-1/2)/(2n+α+β+j+l-2)/j for j in 1:M-l-2]
P2[l,l+1:M-2] = cumprod(_vec)
end
PHI2 = repeat(P1,1,M).*P2
S = zeros(N)
S2 = zeros(N)
for m in 1:M
l = 1:2:m
phi = PHI[l, m]
dS1 = (sinT[:, l]*phi) .* cosA[m, :]
phi2 = PHI2[l, m]
dS12 = (sinT[:, l]*phi2) .* cosA2[m, :]
l = 2:2:m
phi = PHI[l, m]
dS2 = (sinT[:, l]*phi) .* sinA[m, :]
phi2 = PHI2[l, m]
dS22 = (sinT[:, l]*phi2) .* sinA2[m, :]
if m - 1 > 10 && norm(dS1[idx] + dS2[idx], Inf) < eps(Float64) / 100
break
end
S .+= dS1
S .+= dS2
S2 .+= dS12
S2 .+= dS22
sinT[:,1:m] .*= secT
end
# Constant out the front:
dsa = α^2/2n
dsb = β^2/2n
dsab = (α+β)^2/4n
ds = dsa + dsb - dsab
s = ds
i = 1
dsold = ds # to fix α = -β bug.
while abs(ds/s)+dsold > eps(Float64)/10
dsold = abs(ds/s)
i += 1
tmp = -(i-1)/(i+1)/n
dsa = tmp*dsa*α
dsb = tmp*dsb*β
dsab = tmp*dsab*(α+β)/2
ds = dsa + dsb - dsab
s = s + ds
end
p2 = exp(s)*sqrt(2π*(n+α)*(n+β)/(2n+α+β))/(2n+α+β+1)
# g is a vector of coefficients in
# ``\Gamma(z) = \frac{z^{z-1/2}}{\exp(z)}\sqrt{2\pi} \left(\sum_{i} B_i z^{-i}\right)``, where B_{i-1} = g[i].
# https://math.stackexchange.com/questions/1714423/what-is-the-pattern-of-the-stirling-series
g = [1, 1/12, 1/288, -139/51840, -571/2488320, 163879/209018880,
5246819/75246796800, -534703531/902961561600,
-4483131259/86684309913600, 432261921612371/514904800886784000]
f(z) = dot(g, [1;cumprod(ones(9)./z)])
# Float constant C, C2
C = 2*p2*(f(n+α)*f(n+β)/f(2n+α+β))/π
C2 = C*(α+β+2n)*(α+β+1+2n)/(4*(α+n)*(β+n))
vals = C*S
# Use relation for derivative:
ders = (n*((α-β).-(2n+α+β)*cos.(t)).*vals .+ (2*(n+α)*(n+β)*C2).*S2)./(2n+α+β)./sin.(t)
denom = 1 ./ (sin.(abs.(t)/2).^(α+0.5).*cos.(t/2).^(β+0.5))
vals .*= denom
ders .*= denom
return vals, ders
end
function asy2(n::Integer, α::Float64, β::Float64, npts::Integer)
# Algorithm for computing nodes and weights near the boundary.
# Use Newton iterations to find the first few Bessel roots:
jk = approx_besselroots(α, npts)
# Approximate roots via asymptotic formula: (see Olver 1974, NIST, 18.16.8)
phik = jk/(n + .5*(α + β + 1))
t = phik .+ ((α^2-0.25).*(1 .- phik.*cot.(phik))./(2*phik) .- 0.25.*(α^2-β^2).*tan.(0.5.*phik))./(n + .5*(α + β + 1))^2
# Compute higher terms:
higherterms = asy2_higherterms(α, β, t)
# Newton iteration:
for _ in 1:10
vals, ders = feval_asy2(n, α, β, t, higherterms) # Evaluate via asymptotic formula.
dt = vals./ders # Newton update.
t += dt # Next iterate.
if norm(dt,Inf) < sqrt(eps(Float64))/200
break
end
end
vals, ders = feval_asy2(n, α, β, t, higherterms) # Evaluate via asymptotic formula.
dt = vals./ders
t += dt
# flip:
t = reverse(t)
ders = reverse(ders)
# Revert to x-space:
x = cos.(t)
w = 1 ./ ders.^2
return x, w
end
"""
Evaluate the boundary asymptotic formula at x = cos(t).
Assumption:
* `length(t) == n ÷ 2`
"""
function feval_asy2(n::Integer, α::Float64, β::Float64, t::AbstractVector, higherterms::HT) where HT <: Tuple{<:Function, <:Function, <:Function, <:Function}
rho = n + .5*(α + β + 1)
rho2 = n + .5*(α + β - 1)
A = (.25 - α^2)
B = (.25 - β^2)
# Evaluate the Bessel functions:
Ja = besselj.(α, rho*t)
Jb = besselj.(α + 1, rho*t)
Jbb = besselj.(α + 1, rho2*t)
Jab = bessel_taylor(-t, rho*t, α)
# Evaluate functions for recursive definition of coefficients:
gt = A*(cot.(t/2) .- (2 ./ t)) .- B*tan.(t/2)
gtdx = A*(2 ./ t.^2 .- .5*csc.(t/2).^2) .- .5*B*sec.(t/2).^2
tB0 = .25*gt
A10 = α*(A+3*B)/24
A1 = gtdx/8 .- (1+2*α)/8*gt./t .- gt.^2/32 .- A10
# Higher terms:
tB1, A2, tB2, A3 = higherterms
tB1t = tB1(t)
A2t = A2(t)
# VALS:
vals = Ja + Jb.*tB0/rho + Ja.*A1/rho^2 + Jb.*tB1t/rho^3 + Ja.*A2t/rho^4
# DERS:
vals2 = Jab + Jbb.*tB0/rho2 + Jab.*A1/rho2^2 + Jbb.*tB1t/rho2^3 + Jab.*A2t/rho2^4
# Higher terms (not needed for n > 1000).
tB2t = tB2(t)
A3t = A3(t)
vals .+= Jb.*tB2t/rho^5 + Ja.*A3t/rho^6
vals2 .+= Jbb.*tB2t/rho2^5 + Jab.*A3t/rho2^6
# Constant out the front (Computed accurately!)
ds = .5*(α^2)/n
s = ds
jj = 1
while abs(ds/s) > eps(Float64)/10
jj = jj+1
ds = -(jj-1)/(jj+1)/n*(ds*α)
s = s + ds
end
p2 = exp(s)*sqrt((n+α)/n)*(n/rho)^α
g = [1, 1/12, 1/288, -139/51840, -571/2488320, 163879/209018880,
5246819/75246796800, -534703531/902961561600,
-4483131259/86684309913600, 432261921612371/514904800886784000]
f(z) = dot(g, [1;cumprod(ones(9)./z)])
C = p2*(f(n+α)/f(n))/sqrt(2)
# Scaling:
valstmp = C*vals
denom = sin.(t/2).^(α+.5).*cos.(t/2).^(β+.5)
vals = sqrt.(t).*valstmp./denom
# Relation for derivative:
C2 = C*n/(n+α)*(rho/rho2)^α
ders = (n*(α-β .- (2n+α+β)*cos.(t)).*valstmp .+ 2*(n+α)*(n+β)*C2*vals2)/(2n+α+β)
ders .*= sqrt.(t)./(denom.*sin.(t))
return vals, ders
end
function asy2_higherterms(α::Float64, β::Float64, theta::AbstractVector)
# Higher-order terms for boundary asymptotic series.
# Compute the higher order terms in asy2 boundary formula. See [2].
# These constants are more useful than α and β:
A = (0.25 - α^2)
B = (0.25 - β^2)
# For now, just work on half of the domain:
c = max(maximum(theta), .5)
# Use 10 Chebyshev modes in order to use precomputed integration and
# differentiation matrices
N = 10
# Scaled 2nd-kind Chebyshev points and barycentric weights:
t = .5*c*(sin.(pi*(-(N-1):2:(N-1))/(2*(N-1))) .+ 1)
v = [.5; ones(N-1)]
v[2:2:end] .= -1
v[end] *= .5
# The g's:
g = A*(cot.(t/2) - 2 ./t) - B*tan.(t/2)
gp = A*(2 ./ t.^2 - .5*csc.(t/2).^2) - .5*(.25-β^2)*sec.(t/2).^2
gpp = A*(-4 ./ t.^3 + .25*sin.(t).*csc.(t/2).^4) - 4*B*sin.(t/2).^4 .* csc.(t).^3
g[1] = 0
gp[1] = -A/6-.5*B
gpp[1] = 0
# B0:
B0 = .25*g./t
B0p = .25*(gp./t - g./t.^2)
B0[1] = .25*(-A/6-.5*B)
B0p[1] = 0
# A1:
A10 = α*(A+3*B)/24
A1 = .125*gp .- (1+2*α)/2*B0 .- g.^2/32 .- A10
A1p = .125*gpp .- (1+2*α)/2*B0p .- gp.*g/16
A1p_t = A1p./t
A1p_t[1] = -A/720 - A^2/576 - A*B/96 - B^2/64 - B/48 + α*(A/720 + B/48)
# Make f accurately: (Taylor series approx for small t)
fcos = B./(2*cos.(t/2)).^2
f = -A*(1/12 .+ t.^2/240+t.^4/6048 + t.^6/172800 + t.^8/5322240 +
691*t.^10/118879488000 + t.^12/5748019200 +
3617*t.^14/711374856192000 + 43867*t.^16/300534953951232000)
idx = t .> .5
f[idx] = A.*(1 ./ t[idx].^2 - 1 ./ (2*sin.(t[idx]/2)).^2)
f .-= fcos
# Integrals for B1: (Note that N isn't large, so we don't need to be fancy).
C = (.5*c)*CUMSUMMAT_10
D = (2/c)*DIFFMAT_10
I = (C*A1p_t)
J = (C*(f.*A1))
# B1:
tB1 = -.5*A1p - (.5+α)*I + .5*J
tB1[1] = 0
B1 = tB1./t
B1[1] = A/720 + A^2/576 + A*B/96 + B^2/64 + B/48 +
α*(A^2/576 + B^2/64 + A*B/96) - α^2*(A/720 + B/48)
# A2:
K = C*(f.*tB1)
A2 = .5*(D*tB1) - (.5+α)*B1 - .5*K
A2 .-= A2[1]
# A2p:
A2p = D*A2
A2p .-= A2p[1]
A2p_t = A2p./t
# Extrapolate point at t = 0:
w = pi/2 .- t[2:end]
w[2:2:end] = -w[2:2:end]
w[end] = .5*w[end]
A2p_t[1] = sum(w.*A2p_t[2:end])/sum(w)
# B2:
tB2 = -.5*A2p - (.5+α)*(C*A2p_t) + .5*C*(f.*A2)
B2 = tB2./t
# Extrapolate point at t = 0:
B2[1] = sum(w.*B2[2:end])/sum(w)
# A3:
K = C*(f.*tB2)
A3 = .5*(D*tB2) - (.5+α)*B2 - .5*K
A3 .-= A3[1]
tB1f(theta) = bary(theta, tB1, t, v)
A2f(theta) = bary(theta, A2, t, v)
tB2f(theta) = bary(theta, tB2, t, v)
A3f(theta) = bary(theta, A3, t, v)
return tB1f, A2f, tB2f, A3f
end
function jacobi_jacobimatrix(n, α, β)
s = α + β
ii = 2:n-1
si = 2*ii .+ s
aa = [(β - α)/(2 + s);
(β^2 - α^2) ./ ((si .- 2).*si);
(β^2 - α^2) ./ ((2n - 2+s).*(2n+s))]
bb = [2*sqrt( (1 + α)*(1 + β)/(s + 3))/(s + 2) ;
2 .*sqrt.(ii.*(ii .+ α).*(ii .+ β).*(ii .+ s)./(si.^2 .- 1))./si]
return SymTridiagonal(aa, bb)
end
function jacobimoment(α, β)
s = α + β
T = float(typeof(s))
# Same as 2^(α+β+1) * beta(α+1,β+1)
return exp((s+1)*log(convert(T,2)) + loggamma(α+1)+loggamma(β+1)-loggamma(2+s))
end
function jacobi_gw(n::Integer, α, β)
# Golub-Welsh for Gauss--Jacobi quadrature. This is used when max(α,β)>5.
x, V = eigen(jacobi_jacobimatrix(n, α, β)) # Eigenvalue decomposition.
# Quadrature weights:
w = V[1,:].^2 .* jacobimoment(α, β)
return x, w
end
function bary(x::AbstractVector, fvals::AbstractVector, xk::AbstractVector, vk::AbstractVector)
# simple barycentric interpolation routine adapted from chebfun/bary.m
# Initialise return value:
fx = zeros(length(x))
# Loop:
for j in eachindex(x)
xx = vk ./ (x[j] .- xk)
fx[j] = dot(xx, fvals) / sum(xx)
end
# Try to clean up NaNs:
for k in findall(isnan.(fx))
index = findfirst(x[k] .== xk) # Find the corresponding node
if !isempty(index)
fx[k] = fvals[index] # Set entries to the correct value
end
end
return fx
end
function bessel_taylor(t::AbstractVector, z::AbstractVector, α::Float64)
# Accurate evaluation of Bessel function J_A for asy2. (See [2].)
# evaluates J_A(Z+T) by a Taylor series expansion about Z.
npts = length(t)
kmax = min(ceil(Int64, abs(log(eps(Float64))/log(norm(t, Inf)))), 30)
H = t' .^ (0:kmax)
# Compute coeffs in Taylor expansions about z (See NIST 10.6.7)
nu = ones(Int64, length(z)) * (-kmax:kmax)'
JK = z * ones(2kmax+1)'
Bjk = besselj.(α .+ nu, JK)
nck = nck_mat(floor(Int64, 1.25*kmax)) # nchoosek
AA = [Bjk[:,kmax+1] zeros(npts, kmax)]
fact = 1
for k = 1:kmax
sgn = 1
for l = 0:k
AA[:,k+1] = AA[:,k+1] + sgn*nck[k,l+1]*Bjk[:,kmax+2*l-k+1]
sgn = -sgn
end
fact = k*fact
AA[:,k+1] ./= 2^k * fact
end
# Evaluate Taylor series:
Ja = zeros(npts)
for k = 1:npts
Ja[k] = dot(AA[k,:], H[:,k])
end
return Ja
end
function nck_mat(n::Integer)
# almost triangular matrix storing n choose k
M = zeros(Int64, n-1, n)
M[:,1] .= 1
M[1,2] = 1
for i=2:n-1
for j=2:i+1
M[i,j] = M[i-1,j-1] + M[i-1,j]
end
end
return M
end