-
Notifications
You must be signed in to change notification settings - Fork 12
/
math.jl
255 lines (195 loc) · 6.01 KB
/
math.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
# This file is a part of JuliaFEM.
# License is MIT: see https://github.com/JuliaFEM/FEMBasis.jl/blob/master/LICENSE
"""
interpolate(B, T, xi)
Given basis B, interpolate T at xi.
# Example
```jldoctest
B = Quad4()
X = Vec.([(0.0, 0.0), (1.0, 0.0), (1.0, 1.0), (0.0, 1.0)])
T = [1.0, 2.0, 3.0, 4.0]
interpolate(B, T, Vec(0.0, 0.0))
# output
2.5
```
"""
function interpolate(B::AbstractBasis{dim}, T::Vector, xi::Vec{dim}) where {dim}
N = eval_basis(B, xi)
return sum(b*t for (b, t) in zip(N, T))
end
"""
jacobian(B, X, xi)
Given basis B, calculate jacobian at xi.
# Example
```jldoctest
B = Quad4()
X = Vec.([(0.0, 0.0), (1.0, 0.0), (1.0, 1.0), (0.0, 1.0)])
jacobian(B, X, Vec((0.0, 0.0)))
# output
2×2 Tensor{2,2,Float64,4}:
0.5 0.0
0.0 0.5
```
"""
jacobian(B::AbstractBasis{dim}, X::Vector{<:Vec{dim}}, xi::Vec{dim}) where {dim} = jacobian(B, X, xi, eval_dbasis(B, xi))
function jacobian(B::AbstractBasis{dim}, X::Vector{<:Vec{dim}}, xi::Vec{dim}, dB::Vector{<:Vec{dim}}) where {dim}
@assert length(X) == length(B) == length(dB)
J = zero(Tensor{2, dim})
@inbounds for i in 1:length(X)
J += otimes(dB[i], X[i]) # dB[i] ⊗ X[i]
end
return J
end
"""
grad(B, X, xi)
Given basis B, calculate gradient dB/dX at xi.
# Example
```jldoctest
B = Quad4()
X = Vec.([(0.0, 0.0), (1.0, 0.0), (1.0, 1.0), (0.0, 1.0)])
grad(B, X, Vec(0.0, 0.0))
# output
4-element Array{Tensor{1,2,Float64,2},1}:
[-0.5, -0.5]
[0.5, -0.5]
[0.5, 0.5]
[-0.5, 0.5]
```
"""
grad(B::AbstractBasis{dim}, X::Vector{<:Vec{dim}}, xi::Vec{dim}) where {dim} =
grad!(B, similar(X), X, xi, eval_dbasis(B, xi))
function grad!(B::AbstractBasis{dim}, dN::Vector{<:Vec{dim}}, X::Vector{<:Vec{dim}}, xi::Vec{dim}, dB::Vector{<:Vec{dim}}) where {dim}
@assert length(dN) == length(dB)
J = jacobian(B, X, xi, dB)
@inbounds for i in 1:length(dN)
dN[i] = inv(J) ⋅ dB[i]
end
return dN
end
"""
grad(B, T, X, xi)
Calculate gradient of `T` with respect to `X` in point `xi` using basis `B`.
# Example
```jldoctest
B = Quad4()
X = Vec.([(0.0, 0.0), (1.0, 0.0), (1.0, 1.0), (0.0, 1.0)])
u = Vec.([(0.0, 0.0), (1.0, -1.0), (2.0, 3.0), (0.0, 0.0)])
grad(B, u, X, Vec(0.0, 0.0))
# output
julia> grad(B, u, X, Vec(0.0, 0.0))
2×2 Tensor{2,2,Float64,4}:
1.5 0.5
1.0 2.0
```
"""
function grad(B::AbstractBasis{dim}, T::Vector{<:Vec{dim}}, X::Vector{<:Vec{dim}}, xi::Vec{dim}) where {dim}
G = grad(B, X, xi) # <- allocates
dTdX = sum(T[i] ⊗ G[i] for i=1:length(B))
return dTdX
end
function grad(B::AbstractBasis{dim}, T::Vector{<:Number}, X::Vector{<:Vec{dim}}, xi::Vec{dim}) where {dim}
G = grad(B, X, xi) # <- allocates
dTdX = sum(T[i] * G[i] for i=1:length(B))
return dTdX
end
"""
Data type for fast FEM.
"""
mutable struct BasisInfo{B<:AbstractBasis,dim, T, M}
N::Vector{T}
dN::Vector{Vec{dim, T}}
grad::Vector{Vec{dim, T}}
J::Tensor{2, dim, T, M}
invJ::Tensor{2, dim, T, M}
detJ::T
basis::Type{B}
end
Base.length(B::BasisInfo{T}) where T<:AbstractBasis = length(T)
Base.size(B::BasisInfo{T}) where T<:AbstractBasis = size(T)
"""
Initialization of data type `BasisInfo`.
# Examples
```jldoctest
BasisInfo(Tri3)
# output
FEMBasis.BasisInfo{FEMBasis.Tri3,Float64}([0.0 0.0 0.0], [0.0 0.0 0.0; 0.0 0.0 0.0], [0.0 0.0 0.0; 0.0 0.0 0.0], [0.0 0.0; 0.0 0.0], [0.0 0.0; 0.0 0.0], 0.0)
```
"""
function BasisInfo(::Type{B}, T=Float64) where B <: AbstractBasis{dim} where dim
nbasis = length(B)
N = zeros(T, nbasis)
dN = zeros(Vec{dim, T}, nbasis)
grad = zeros(Vec{dim, T}, nbasis)
J = zero(Tensor{2, dim, T})
invJ = zero(Tensor{2, dim, T})
detJ = zero(T)
return BasisInfo(N, dN, grad, J, invJ, detJ, B)
end
"""
Evaluate basis, gradient and so on for some point `xi`.
# Examples
```jldoctest
b = BasisInfo(Quad4)
X = Vec.([(0.0,0.0), (1.0,0.0), (1.0,1.0), (0.0,1.0)])
xi = Vec(0.0, 0.0)
eval_basis!(b, X, xi)
# output
BasisInfo{Quad4,2,Float64,4}([0.25, 0.25, 0.25, 0.25], Tensors.Tensor{1,2,Float64,2}[[-0.25, -0.25], [0.25, -0.25], [0.25, 0.25], [-0.25, 0.25]], Tensors.Tensor{1,2,Float64,2}[[-0.5, -0.5], [0.5, -0.5], [0.5, 0.5], [-0.5, 0.5]], [0.5 0.0; 0.0 0.5], [2.0 -0.0; -0.0 2.0], 0.25, Quad4)
```
"""
function eval_basis!(bi::BasisInfo{B},
X::Vector{<:Vec{dim}}, xi::Vec{dim}) where B <: AbstractBasis{dim} where dim
# evaluate basis and derivatives
eval_basis!(B, bi.N, xi)
eval_dbasis!(B, bi.dN, xi)
# calculate Jacobian
bi.J = jacobian(B(), X, xi, bi.dN)
# calculate determinant of Jacobian + gradient operator
# TODO, fixup curve + manifold
# @assert dim[1] == dim[2]
bi.invJ = inv(bi.J)
@inbounds for i in 1:length(bi.dN)
bi.grad[i] = bi.invJ ⋅ bi.dN[i]
end
bi.detJ = det(bi.J)
#=
elseif dim1 == 1 # curve
bi.detJ = norm(bi.J)
elseif dim1 == 2 # manifold
bi.detJ = norm(cross(bi.J[1,:], bi.J[2,:]))
end
=#
return bi
end
"""
grad!(bi, gradu, u)
Evalute gradient ∂u/∂X and store result to matrix `gradu`. It is assumed
that `eval_basis!` has been already run to `bi` so it already contains
all necessary matrices evaluated with some `X` and `xi`.
# Example
First setup and evaluate basis using `eval_basis!`:
```jldoctest ex1
B = BasisInfo(Quad4)
X = Vec.([(0.0,0.0), (1.0,0.0), (1.0,1.0), (0.0,1.0)])
xi = Vec(0.0, 0.0)
eval_basis!(B, X, xi)
# output
BasisInfo{Quad4,2,Float64}([0.25, 0.25, 0.25, 0.25], Tensors.Tensor{1,2,Float64,2}[[-0.25, -0.25], [0.25, -0.25], [0.25, 0.25], [-0.25, 0.25]], Tensors.Tensor{1,2,Float64,2}[[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [-0.5, 0.5]], [0.5 0.0; 0.0 0.5], [2.0 -0.0; -0.0 2.0], 0.25)
```
Next, calculate gradient of `u`:
```jldoctest ex1
u = Vec.([(0.0, 0.0), (1.0, -1.0), (2.0, 3.0), (0.0, 0.0)])
grad(B, u)
# output
2×2 Tensors.Tensor{2,2,Float64,4}:
1.5 0.5
1.0 2.0
```
"""
function grad(bi::BasisInfo{B}, u::Vector{<:Vec{dim}}) where B <: AbstractBasis{dim} where dim
gradu = zero(Tensor{2, dim})
for k in 1:length(B)
gradu += otimes(u[k], bi.grad[k])
end
return gradu
end