Plotting recipes for statistics and machine learning using Plots.jl
Julia
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Failed to load latest commit information.
docs
src
test
.gitignore
.travis.yml travis May 2, 2016
LICENSE.md
README.md
REQUIRE
appveyor.yml

README.md

MLPlots

Build Status

Common plotting recipes for statistics and machine learning.

This package uses RecipesBase to provide mappings from types defined in statistics and machine learning packages to generic descriptions of visualization attributes and data. These recipes can then be used in conjunction with Plots.jl to provide flexible statistical and machine learning visualizations which are independent of both the platform and graphical library.

Many recipes are conditionally included and are loaded on the relevant using call of the library. For example using ROCAnalysis, MLPlots will load plotting recipes for roc curves defined in ROCAnalysis. Recipes include:

Status: This package is currently on hiatus until further notice. Collaboration is welcomed and encouraged!

OnlineAI

Neural nets with OnlineAI.jl. Show the current state of a neural net:

using OnlineAI, MLPlots
net = buildClassificationNet(3, 1, [15,10,5])
plot(net)

onlineai1

For spiking neuron models, a spike (or raster) plot is useful to see firing times among neurons:

n = 20
spikes = SpikeTrains(n, title = "Spike Trains", color = :darkblue)
for t=1:100, i=1:n
    if rand() < 0.1
        push!(spikes, i, t)
    end
end
spikes.plt

onlineai

ROCAnalysis

ROCAnalysis.jl

using ROCAnalysis, MLPlots
curve = ROCAnalysis.roc(2+2randn(1000), -2+2randn(100000))
plot(curve)

rocanalysis