Skip to content

PyTorch implementation of Independently Recurrent Neural Networks

License

Notifications You must be signed in to change notification settings

Jyouhou/IndRNN-pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

indRNN-pt

PyTorch implementation of Independently Recurrent Neural Networks by Shuai Li et al. (accepted to CVPR2018).

How to Run

test the trained model

on MNIST: python3 Sequential_task.py --test --test_model=./best_model_mnist.pt --dataset=mnist --log_folder=./test

train

  1. on MNIST: python3 Sequential_task.py --dataset=mnist
  2. on pMNIST: python3 Sequential_task.py --dataset=pmnist

Env

Python 3.6.6
pytorch 0.4.0
torchvision 0.2.1
cuda 8.0
numpy 1.14.5

Result

task valid test
sequential-mnist 98.98 98.80
p-mnist 94.22
(94.40 from
Theano&Lasagne)
-
fashion-mnist 91.60 -

About

PyTorch implementation of Independently Recurrent Neural Networks

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages