EEGMatch: Learning with Incomplete Labels for Semi-Supervised EEG-based Cross-Subject Emotion Recognition
- A Pytorch implementation of our under reviewed paper "EEGMatch: Learning with Incomplete Labels for
Semi-Supervised EEG-based Cross-Subject Emotion Recognition".
- arxiv
- Python 3.7
- Pytorch 1.3.1
- NVIDIA CUDA 9.2
- Numpy 1.20.3
- Scikit-learn 0.23.2
- scipy 1.3.1
- EEGMatch model definition file: model_EEGMatch.py
- Pipeline of the EEGMatch: implementation_EEGMatch.py
- implementation of domain adversarial training: Adversarial_DG.py
- data_prepare_seed.m
- After modify setting (path, etc), just run the main function in the implementation_EEGMatch.py
- The implementation code of domain adversarial training is bulit on the dalib code base
@misc{zhou2023eegmatch, title={EEGMatch: Learning with Incomplete Labels for Semi-Supervised EEG-based Cross-Subject Emotion Recognition}, author={Rushuang Zhou and Weishan Ye and Zhiguo Zhang and Yanyang Luo and Li Zhang and Linling Li and Gan Huang and Yining Dong and Yuan-Ting Zhang and Zhen Liang}, year={2023}, eprint={2304.06496}, archivePrefix={arXiv}, primaryClass={eess.SP} }