End to End MLOPs pipeline using MLflow, DVC, Python , Flask- Dataset Used - Wine Quality Prediction Dataset (https://www.kaggle.com/datasets/rajyellow46/wine-quality) Reference - https://www.youtube.com/playlist?list=PLZoTAELRMXVOk1pRcOCaG5xtXxgMalpIe
Also implemented the Retraining Pipeline example in retrain_test branch where my data is kept in remote GDrive folder
create env
conda create -n wineq python=3.7 -y
activate env
conda activate wineq
created a req file
install the req
pip install -r requirements.txt
download the data from
https://drive.google.com/drive/folders/18zqQiCJVgF7uzXgfbIJ-04zgz1ItNfF5?usp=sharing
git init
dvc init
dvc add data_given/winequality.csv
git add .
git commit -m "first commit"
oneliner updates for readme
git add . && git commit -m "update Readme.md"
git remote add origin https://github.com/c17hawke/simple-dvc-demo.git
git branch -M main
git push origin main
tox command -
tox
for rebuilding -
tox -r
pytest command
pytest -v
setup commands -
pip install -e .
build your own package commands-
python setup.py sdist bdist_wheel