Skip to content

stable diffusion implementaion for anime images with captions

Notifications You must be signed in to change notification settings

Killua7362/animefusion

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Contributors Forks Stargazers Issues MIT License LinkedIn


Logo

AnimeFusion

Stable diffusion implementation with transformers!
Report Bug · Request Feature

Table of Contents
  1. About The Project
  2. Built With
  3. Getting Started
  4. Results
  5. Roadmap
  6. Credits

About The Project

Stable diffusion is a vital concept in the realm of generative models, serving as a technique to enhance the quality and diversity of generated data. It addresses key challenges associated with traditional generative models, such as mode collapse and limited variability in generated samples. At its core, stable diffusion involves a controlled process of transitioning data from an initial state to a final state while incrementally introducing noise at each step. This controlled noise injection allows generative models to explore a broader spectrum of data variations, resulting in more realistic and diverse output.

Built With

Getting Started

Install all the libraries

pip install pytorch torchvision transformers diffusers numpy albumentations

Change the arguments value like dataset,batch size,etc in trainer.py file and call any function train or test at the end of the file and run trainer.py

Results

Logo

Roadmap

  • Implementing stable diffusion with Unet,VAE and clip model
  • Writing both test and train function
  • Training on Anime dataset
  • Trying different hyperparameters

See the open issues for a full list of proposed features (and known issues).

Credits

About

stable diffusion implementaion for anime images with captions

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages