forked from vvasilo/semnav
-
Notifications
You must be signed in to change notification settings - Fork 2
/
navigation_semantic.cpp
executable file
·665 lines (565 loc) · 34.1 KB
/
navigation_semantic.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
// MIT License (modified)
// Copyright (c) 2020 The Trustees of the University of Pennsylvania
// Authors:
// Vasileios Vasilopoulos <vvasilo@seas.upenn.edu>
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this **file** (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#include <reactive_planner_lib.h>
#define BEHAVIOR_SIT 0
#define BEHAVIOR_STAND 1
#define BEHAVIOR_WALK 2
#define MODE_STAND 0
#define MODE_START 1
// Define properties for dilations
const int points_per_circle = 5;
bg::strategy::buffer::join_miter join_strategy_input;
bg::strategy::buffer::end_flat end_strategy_input;
bg::strategy::buffer::point_circle point_strategy_input;
bg::strategy::buffer::side_straight side_strategy_input;
class SemanticNavigationNode {
public:
// Constructor
SemanticNavigationNode(ros::NodeHandle* nodehandle) : nh_(*nodehandle) {
// Find parameters
nh_.getParam("pub_twist_topic", pub_twist_topic_);
nh_.getParam("pub_behaviorID_topic", pub_behaviorID_topic_);
nh_.getParam("pub_behaviorMode_topic", pub_behaviorMode_topic_);
nh_.getParam("sub_laser_topic", sub_laser_topic_);
nh_.getParam("sub_robot_topic", sub_robot_topic_);
nh_.getParam("sub_semantic_topic", sub_semantic_topic_);
nh_.getParam("world_frame_id", world_frame_id_);
nh_.getParam("odom_frame_id", odom_frame_id_);
nh_.getParam("laser_frame_id", laser_frame_id_);
nh_.getParam("target_object", target_object_);
nh_.getParam("target_object_length", target_object_length_);
nh_.getParam("target_object_width", target_object_width_);
nh_.getParam("RobotRadius", RobotRadius_);
nh_.getParam("ObstacleDilation", ObstacleDilation_);
nh_.getParam("WalkHeight", WalkHeight_);
nh_.getParam("AllowableRange", AllowableRange_);
nh_.getParam("CutoffRange", CutoffRange_);
nh_.getParam("ForwardLinCmdLimit", ForwardLinCmdLimit_);
nh_.getParam("BackwardLinCmdLimit", BackwardLinCmdLimit_);
nh_.getParam("AngCmdLimit", AngCmdLimit_);
nh_.getParam("RFunctionExponent", RFunctionExponent_);
nh_.getParam("Epsilon", Epsilon_);
nh_.getParam("VarEpsilon", VarEpsilon_);
nh_.getParam("Mu1", Mu1_);
nh_.getParam("Mu2", Mu2_);
nh_.getParam("SemanticMapUpdateRate", DiffeoTreeUpdateRate_);
DiffeoParams_ = DiffeoParamsClass(RFunctionExponent_, Epsilon_, VarEpsilon_, Mu1_, Mu2_, {{-100.0, -100.0}, {100.0, -100.0}, {100.0, 100.0}, {-100.0, 100.0}, {-100.0, -100.0}});
nh_.getParam("LinearGain", LinearGain_);
nh_.getParam("AngularGain", AngularGain_);
nh_.getParam("Goal_x", Goal_x_);
nh_.getParam("Goal_y", Goal_y_);
Goal_.set<0>(Goal_x_);
Goal_.set<1>(Goal_y_);
nh_.getParam("Tolerance", Tolerance_);
nh_.getParam("LowpassCutOff", LowpassCutoff_);
nh_.getParam("LowpassSampling", LowpassSampling_);
nh_.getParam("LowpassOrder", LowpassOrder_);
nh_.getParam("LowpassSamples", LowpassSamples_);
nh_.getParam("DebugFlag", DebugFlag_);
// Initialize publishers
pub_behaviorID_ = nh_.advertise<std_msgs::UInt32>(pub_behaviorID_topic_, 1, true);
pub_behaviorMode_ = nh_.advertise<std_msgs::UInt32>(pub_behaviorMode_topic_, 1, true);
pub_twist_ = nh_.advertise<geometry_msgs::Twist>(pub_twist_topic_, 1, true);
// Register callbacks
message_filters::Subscriber<sensor_msgs::LaserScan> sub_laser(nh_, sub_laser_topic_, 1);
message_filters::Subscriber<nav_msgs::Odometry> sub_robot(nh_, sub_robot_topic_, 1);
typedef message_filters::sync_policies::ApproximateTime<sensor_msgs::LaserScan,nav_msgs::Odometry> SyncPolicy;
typedef message_filters::Synchronizer<SyncPolicy> Sync;
boost::shared_ptr<Sync> sync;
sync.reset(new Sync(SyncPolicy(100000), sub_laser, sub_robot));
sync->registerCallback(boost::bind(&SemanticNavigationNode::control_callback, this, _1, _2));
ros::Subscriber sub_semantic = nh_.subscribe(sub_semantic_topic_, 1, &SemanticNavigationNode::diffeo_tree_update, this);
// Publish zero commands
publish_behavior_id(BEHAVIOR_STAND);
ros::Duration(5.0).sleep();
publish_behavior_id(BEHAVIOR_WALK);
publish_twist(0.0, 0.0);
// Spin
// ros::MultiThreadedSpinner spinner(4);
// spinner.spin();
ros::spin();
}
void publish_twist(double LinearCmd, double AngularCmd) {
geometry_msgs::Twist commandTwist;
commandTwist.linear.x = LinearCmd;
commandTwist.angular.z = AngularCmd;
pub_twist_.publish(commandTwist);
return;
}
void publish_behavior_id(uint16_t BehaviorIdCmd) {
std_msgs::UInt32 commandId;
commandId.data = BehaviorIdCmd;
pub_behaviorID_.publish(commandId);
return;
}
void publish_behavior_mode(uint16_t BehaviorModeCmd) {
std_msgs::UInt32 commandMode;
commandMode.data = BehaviorModeCmd;
pub_behaviorMode_.publish(commandMode);
return;
}
void diffeoTrees_cout(std::vector<std::vector<PolygonClass>> diffeoTreeArray) {
// Mapper
std::ofstream svg("/home/kodlab-xavier/tree.svg");
bg::svg_mapper<point> mapper(svg, 1000, 1000);
std::vector<polygon> polygon_vector, polygon_tilde_vector;
std::vector<point> point_vector;
// Print polygon information
std::cout << "Number of polygons: " << diffeoTreeArray.size() << std::endl;
for (size_t i = 0; i < diffeoTreeArray.size(); i++) {
std::cout << "Now printing tree for polygon " << i << std::endl;
for (size_t j = 0; j < diffeoTreeArray[i].size(); j++) {
std::cout << "Polygon " << j << " index: " << diffeoTreeArray[i][j].get_index() << std::endl;
std::cout << "Polygon " << j << " depth: " << diffeoTreeArray[i][j].get_depth() << std::endl;
std::cout << "Polygon " << j << " predecessor: " << diffeoTreeArray[i][j].get_predecessor() << std::endl;
std::cout << "Polygon " << j << " radius: " << diffeoTreeArray[i][j].get_radius() << std::endl;
std::cout << "Polygon " << j << " center: " << bg::dsv(diffeoTreeArray[i][j].get_center()) << std::endl;
std::vector<point> polygon_vertices = diffeoTreeArray[i][j].get_vertices();
polygon_vertices.push_back(polygon_vertices[0]);
std::vector<point> polygon_vertices_tilde = diffeoTreeArray[i][j].get_vertices_tilde();
polygon_vertices_tilde.push_back(polygon_vertices_tilde[0]);
std::vector<point> augmented_polygon_vertices = diffeoTreeArray[i][j].get_augmented_vertices();
augmented_polygon_vertices.push_back(augmented_polygon_vertices[0]);
polygon polygon_vertices_polygon = BoostPointToBoostPoly(polygon_vertices);
polygon polygon_vertices_tilde_polygon = BoostPointToBoostPoly(polygon_vertices_tilde);
polygon augmented_polygon_vertices_polygon = BoostPointToBoostPoly(augmented_polygon_vertices);
polygon_vector.push_back(polygon_vertices_polygon);
polygon_tilde_vector.push_back(polygon_vertices_tilde_polygon);
point_vector.push_back(diffeoTreeArray[i][j].get_center());
std::cout << "Polygon " << j << " vertices: " << bg::dsv(polygon_vertices_polygon) << std::endl;
std::cout << "Polygon " << j << " augmented vertices: " << bg::dsv(augmented_polygon_vertices_polygon) << std::endl;
std::cout << "Polygon " << j << " size of r_t " << diffeoTreeArray[i][j].get_r_t().size() << std::endl;
std::cout << "Polygon " << j << " size of r_n " << diffeoTreeArray[i][j].get_r_n().size() << std::endl;
std::cout << "Polygon " << j << " collar: " << bg::dsv(polygon_vertices_tilde_polygon) << std::endl;
std::cout << "Polygon " << j << " size of r_tilde_t " << diffeoTreeArray[i][j].get_r_tilde_t().size() << std::endl;
std::cout << "Polygon " << j << " size of r_tilde_n " << diffeoTreeArray[i][j].get_r_tilde_n().size() << std::endl;
std::cout << "Polygon " << j << " polygons are valid: " << bg::is_valid(polygon_vertices_polygon) << " " << bg::is_valid(polygon_vertices_tilde_polygon) << std::endl;
std::cout << " " << std::endl;
}
}
// Plot
std::cout << polygon_vector.size() << std::endl;
for (size_t i = 0; i < polygon_vector.size(); i++) {
mapper.add(polygon_vector[i]);
mapper.add(polygon_tilde_vector[i]);
mapper.add(point_vector[i]);
}
for (size_t i = 0; i < polygon_vector.size(); i++) {
mapper.map(polygon_vector[i], "fill-opacity:0.3;fill:rgb(51,51,153);stroke:rgb(51,51,153);stroke-width:5", 5);
mapper.map(polygon_tilde_vector[i], "fill-opacity:0.3;fill:rgb(255,0,0);stroke:rgb(255,0,0);stroke-width:3", 3);
mapper.map(point_vector[i], "fill-opacity:0.3;fill:rgb(153,204,0);stroke:rgb(153,204,0);stroke-width:5", 5);
}
}
void diffeo_tree_update(const object_pose_interface_msgs::SemanticMapObjectArray::ConstPtr& semantic_map_data) {
/**
* Function that updates the semantic map polygons to be used by the control callback
*
* Input:
* 1) semantic_map_data: A SemanticMapObjectArray object
*/
// Check if update is needed
// std::cout << DiffeoTreeUpdateRate_ << std::endl;
// std::cout << ros::Time::now().toSec() - DiffeoTreeUpdateTime_ << std::endl;
if (ros::Time::now().toSec() - DiffeoTreeUpdateTime_ < (1.0/DiffeoTreeUpdateRate_)) {
return;
} else {
// Count time
double start_time = ros::Time::now().toSec();
// Start with candidate goals equal to the given goal
std::vector<point> GoalVector = {Goal_, Goal_};
std::vector<double> targetOrientationVector = {0.0, 0.0};
// Span the incoming message to check whether we have the target object
for (size_t i = 0; i < semantic_map_data->objects.size(); i++) {
// Detect if the desired object is there
if (semantic_map_data->objects[i].classification.type.name == target_object_) {
// Find rotation in the global frame
tf::Quaternion rotation = tf::Quaternion(semantic_map_data->objects[i].pose.pose.orientation.x,
semantic_map_data->objects[i].pose.pose.orientation.y,
semantic_map_data->objects[i].pose.pose.orientation.z,
semantic_map_data->objects[i].pose.pose.orientation.w);
tf::Matrix3x3 m(rotation);
// Find rotated object
tf::Vector3 target_nominal_1(-0.5*target_object_width_ - ObstacleDilation_ - 0.08, 0.0, 0.0);
tf::Vector3 target_nominal_2(0.5*target_object_width_ + ObstacleDilation_ + 0.25, 0.0, 0.0);
tf::Vector3 target_nominal_1_rotated = tf::quatRotate(rotation, target_nominal_1);
tf::Vector3 target_nominal_2_rotated = tf::quatRotate(rotation, target_nominal_2);
double roll, pitch, yaw;
m.getRPY(roll, pitch, yaw);
GoalVector[0].set<0>(semantic_map_data->objects[i].pose.pose.position.x + target_nominal_1_rotated.getX());
GoalVector[0].set<1>(semantic_map_data->objects[i].pose.pose.position.y + target_nominal_1_rotated.getY());
GoalVector[1].set<0>(semantic_map_data->objects[i].pose.pose.position.x + target_nominal_2_rotated.getX());
GoalVector[1].set<1>(semantic_map_data->objects[i].pose.pose.position.y + target_nominal_2_rotated.getY());
targetOrientationVector[0] = fmodf(yaw, M_PI);
targetOrientationVector[1] = fmodf(yaw-M_PI, M_PI);
}
}
// Initialize polygon lists
std::vector<polygon> polygon_list;
std::vector<polygon> polygon_list_merged;
// Span the incoming message to add all the polygons
for (size_t i = 0; i < semantic_map_data->objects.size(); i++) {
// Detect if the desired object is there
// if (semantic_map_data->objects[i].classification.type.name == target_object_) {
// continue;
// }
// Extract points of the polygon
std::vector<point> polygon_in_points;
for (size_t j = 0; j < semantic_map_data->objects[i].polygon2d.polygon.points.size(); j++) {
polygon_in_points.push_back(point(semantic_map_data->objects[i].polygon2d.polygon.points[j].x, semantic_map_data->objects[i].polygon2d.polygon.points[j].y));
}
polygon polygon_in = BoostPointToBoostPoly(polygon_in_points);
// Dilate the polygon by the robot radius and append it to the polygon list
multi_polygon output;
bg::strategy::buffer::distance_symmetric<double> distance_strategy(ObstacleDilation_);
bg::buffer(polygon_in, output, distance_strategy, side_strategy_input, join_strategy_input, end_strategy_input, point_strategy_input);
polygon polygon_out = output.front();
polygon polygon_out_simplified;
bg::simplify(polygon_out, polygon_out_simplified, 0.2);
polygon_list.push_back(polygon_out_simplified);
if (bg::within(GoalVector[0], polygon_out_simplified) && !(semantic_map_data->objects[i].classification.type.name == target_object_)) {
ROS_ERROR_STREAM("Goal blocked by object");
GoalVector.erase(GoalVector.begin());
targetOrientationVector.erase(targetOrientationVector.begin());
}
}
// Span all the found polygons to check for intersections between the known polygons and keep only the merged polygons
multi_polygon output_union;
if (polygon_list.size() >= 1) {
output_union.push_back(polygon_list.back());
polygon_list.pop_back();
while (!polygon_list.empty()) {
polygon next_polygon = polygon_list.back();
polygon_list.pop_back();
multi_polygon temp_result;
bg::union_(output_union, next_polygon, temp_result);
output_union = temp_result;
}
}
for (size_t i = 0; i < output_union.size(); i++) {
polygon simplified_component;
bg::simplify(output_union[i], simplified_component, 0.2);
polygon_list_merged.push_back(simplified_component);
}
// Find diffeomorphism trees for all merged polygons
std::vector<std::vector<PolygonClass>> localDiffeoTreeArray;
for (size_t i = 0; i < polygon_list_merged.size(); i++) {
// std::cout << bg::dsv(polygon_list_merged[i]) << std::endl;
std::vector<PolygonClass> tree;
diffeoTreeConvex(BoostPointToStd(BoostPolyToBoostPoint(polygon_list_merged[i])), DiffeoParams_, &tree);
localDiffeoTreeArray.push_back(tree);
}
// Update
{
std::lock_guard<std::mutex> lock(mutex_);
DiffeoTreeArray_.clear();
PolygonList_.clear();
DiffeoTreeArray_.assign(localDiffeoTreeArray.begin(), localDiffeoTreeArray.end());
PolygonList_.assign(polygon_list_merged.begin(), polygon_list_merged.end());
Goal_ = GoalVector[0];
TargetOrientation_ = targetOrientationVector[0];
}
if (DebugFlag_) {
diffeoTrees_cout(DiffeoTreeArray_);
}
ROS_WARN_STREAM("[Navigation] Updated trees in " << ros::Time::now().toSec()-start_time << " seconds.");
// Update time
DiffeoTreeUpdateTime_ = ros::Time::now().toSec();
}
return;
}
void control_callback(const sensor_msgs::LaserScan::ConstPtr& lidar_data, const nav_msgs::Odometry::ConstPtr& robot_data) {
/**
* Callback function that implements the main part of the reactive controller
*
* Input:
* 1) lidar_data: Data received from the LIDAR sensor
* 2) robot_data: Data received from the robot odometry topic
*/
// Make local copies
std::vector<polygon> localPolygonList;
std::vector<std::vector<PolygonClass>> localDiffeoTreeArray;
point localGoal;
double localTargetOrientation;
{
std::lock_guard<std::mutex> lock(mutex_);
localPolygonList.assign(PolygonList_.begin(), PolygonList_.end());
localDiffeoTreeArray.assign(DiffeoTreeArray_.begin(), DiffeoTreeArray_.end());
localGoal = Goal_;
localTargetOrientation = TargetOrientation_;
}
// Compute before time
double before_time = ros::Time::now().toSec();
// Assuming the incoming odometry message is in the odom frame, transform to map frame
geometry_msgs::PoseStamped odomPose, mapPose;
odomPose.header.stamp = ros::Time(0);
odomPose.header.frame_id = odom_frame_id_;
odomPose.pose = robot_data->pose.pose;
try {
listener_.waitForTransform(world_frame_id_, odom_frame_id_, ros::Time(0), ros::Duration(1.0));
listener_.transformPose(world_frame_id_, odomPose, mapPose);
} catch (tf::TransformException &ex) {
ROS_ERROR("%s",ex.what());
return;
}
// Get robot position and orientation
tf::Quaternion rotation = tf::Quaternion(mapPose.pose.orientation.x,
mapPose.pose.orientation.y,
mapPose.pose.orientation.z,
mapPose.pose.orientation.w);
tf::Matrix3x3 m(rotation);
double roll, pitch, yaw;
m.getRPY(roll, pitch, yaw);
double x_robot_position = mapPose.pose.position.x;
double y_robot_position = mapPose.pose.position.y;
// Register robot state - Compensate for LIDAR to camera transform
double RobotPositionX = x_robot_position;
double RobotPositionY = y_robot_position;
RobotPitch_ = pitch;
RobotPosition_.set<0>(RobotPositionX-RobotRadius_*cos(yaw));
RobotPosition_.set<1>(RobotPositionY-RobotRadius_*sin(yaw));
RobotOrientation_ = yaw;
// Construct LIDAR object
LIDARClass LIDAR;
constructLIDAR2D(lidar_data, CutoffRange_, AllowableRange_, RobotPitch_, &LIDAR);
// Complete LIDAR readings
completeLIDAR2D(&LIDAR);
// ROS_INFO_STREAM("[Navigation] Constructed LIDAR with " << LIDAR.RangeMeasurements.size() << " rays and " << LIDAR.Angle.size() << " angles.");
// Set the LIDAR rays that hit known obstacles to the LIDAR range
for (size_t i = 0; i < localPolygonList.size(); i++) {
compensateObstacleLIDAR2D(RobotPosition_, RobotOrientation_, localPolygonList[i], &LIDAR);
}
// ROS_INFO_STREAM("[Navigation] Compensated for known obstacles.");
// Find list of polygon objects in the model layer based on the known obstacles
std::vector<polygon> KnownObstaclesModel;
for (size_t i = 0; i < localDiffeoTreeArray.size(); i++) {
std::vector<double> theta = linspace(-M_PI, M_PI, 15);
std::vector<std::vector<double>> model_polygon_coords;
point root_center = localDiffeoTreeArray[i].back().get_center();
double root_radius = localDiffeoTreeArray[i].back().get_radius();
for (size_t j = 0; j < theta.size(); j++) {
model_polygon_coords.push_back({root_center.get<0>()+root_radius*cos(theta[j]), root_center.get<1>()+root_radius*sin(theta[j])});
}
KnownObstaclesModel.push_back(BoostPointToBoostPoly(StdToBoostPoint(model_polygon_coords)));
}
// ROS_INFO_STREAM("[Navigation] Constructed model space.");
// Find the diffeomorphism and its jacobian at the robot position, along with the necessary second derivatives
std::vector<double> RobotPositionTransformed = {RobotPosition_.get<0>(), RobotPosition_.get<1>()};
std::vector<std::vector<double>> RobotPositionTransformedD = {{1.0, 0.0}, {0.0, 1.0}};
std::vector<double> RobotPositionTransformedDD = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
for (size_t i = 0; i < localDiffeoTreeArray.size(); i++) {
OutputStructVector TempTransformation = polygonDiffeoConvex(RobotPositionTransformed, localDiffeoTreeArray[i], DiffeoParams_);
std::vector<double> TempPositionTransformed = TempTransformation.Value;
std::vector<std::vector<double>> TempPositionTransformedD = TempTransformation.Jacobian;
std::vector<double> TempPositionTransformedDD = TempTransformation.JacobianD;
double res1 = TempPositionTransformedD[0][0]*RobotPositionTransformedDD[0] + TempPositionTransformedD[0][1]*RobotPositionTransformedDD[4] + RobotPositionTransformedD[0][0]*(TempPositionTransformedDD[0]*RobotPositionTransformedD[0][0] + TempPositionTransformedDD[1]*RobotPositionTransformedD[1][0]) + RobotPositionTransformedD[1][0]*(TempPositionTransformedDD[2]*RobotPositionTransformedD[0][0] + TempPositionTransformedDD[3]*RobotPositionTransformedD[1][0]);
double res2 = TempPositionTransformedD[0][0]*RobotPositionTransformedDD[1] + TempPositionTransformedD[0][1]*RobotPositionTransformedDD[5] + RobotPositionTransformedD[0][0]*(TempPositionTransformedDD[0]*RobotPositionTransformedD[0][1] + TempPositionTransformedDD[1]*RobotPositionTransformedD[1][1]) + RobotPositionTransformedD[1][0]*(TempPositionTransformedDD[2]*RobotPositionTransformedD[0][1] + TempPositionTransformedDD[3]*RobotPositionTransformedD[1][1]);
double res3 = TempPositionTransformedD[0][0]*RobotPositionTransformedDD[2] + TempPositionTransformedD[0][1]*RobotPositionTransformedDD[6] + RobotPositionTransformedD[0][1]*(TempPositionTransformedDD[0]*RobotPositionTransformedD[0][0] + TempPositionTransformedDD[1]*RobotPositionTransformedD[1][0]) + RobotPositionTransformedD[1][1]*(TempPositionTransformedDD[2]*RobotPositionTransformedD[0][0] + TempPositionTransformedDD[3]*RobotPositionTransformedD[1][0]);
double res4 = TempPositionTransformedD[0][0]*RobotPositionTransformedDD[3] + TempPositionTransformedD[0][1]*RobotPositionTransformedDD[7] + RobotPositionTransformedD[0][1]*(TempPositionTransformedDD[0]*RobotPositionTransformedD[0][1] + TempPositionTransformedDD[1]*RobotPositionTransformedD[1][1]) + RobotPositionTransformedD[1][1]*(TempPositionTransformedDD[2]*RobotPositionTransformedD[0][1] + TempPositionTransformedDD[3]*RobotPositionTransformedD[1][1]);
double res5 = TempPositionTransformedD[1][0]*RobotPositionTransformedDD[0] + TempPositionTransformedD[1][1]*RobotPositionTransformedDD[4] + RobotPositionTransformedD[0][0]*(TempPositionTransformedDD[4]*RobotPositionTransformedD[0][0] + TempPositionTransformedDD[5]*RobotPositionTransformedD[1][0]) + RobotPositionTransformedD[1][0]*(TempPositionTransformedDD[6]*RobotPositionTransformedD[0][0] + TempPositionTransformedDD[7]*RobotPositionTransformedD[1][0]);
double res6 = TempPositionTransformedD[1][0]*RobotPositionTransformedDD[1] + TempPositionTransformedD[1][1]*RobotPositionTransformedDD[5] + RobotPositionTransformedD[0][0]*(TempPositionTransformedDD[4]*RobotPositionTransformedD[0][1] + TempPositionTransformedDD[5]*RobotPositionTransformedD[1][1]) + RobotPositionTransformedD[1][0]*(TempPositionTransformedDD[6]*RobotPositionTransformedD[0][1] + TempPositionTransformedDD[7]*RobotPositionTransformedD[1][1]);
double res7 = TempPositionTransformedD[1][0]*RobotPositionTransformedDD[2] + TempPositionTransformedD[1][1]*RobotPositionTransformedDD[6] + RobotPositionTransformedD[0][1]*(TempPositionTransformedDD[4]*RobotPositionTransformedD[0][0] + TempPositionTransformedDD[5]*RobotPositionTransformedD[1][0]) + RobotPositionTransformedD[1][1]*(TempPositionTransformedDD[6]*RobotPositionTransformedD[0][0] + TempPositionTransformedDD[7]*RobotPositionTransformedD[1][0]);
double res8 = TempPositionTransformedD[1][0]*RobotPositionTransformedDD[3] + TempPositionTransformedD[1][1]*RobotPositionTransformedDD[7] + RobotPositionTransformedD[0][1]*(TempPositionTransformedDD[4]*RobotPositionTransformedD[0][1] + TempPositionTransformedDD[5]*RobotPositionTransformedD[1][1]) + RobotPositionTransformedD[1][1]*(TempPositionTransformedDD[6]*RobotPositionTransformedD[0][1] + TempPositionTransformedDD[7]*RobotPositionTransformedD[1][1]);
RobotPositionTransformedDD[0] = res1;
RobotPositionTransformedDD[1] = res2;
RobotPositionTransformedDD[2] = res3;
RobotPositionTransformedDD[3] = res4;
RobotPositionTransformedDD[4] = res5;
RobotPositionTransformedDD[5] = res6;
RobotPositionTransformedDD[6] = res7;
RobotPositionTransformedDD[7] = res8;
RobotPositionTransformedD = MatrixMatrixMultiplication(TempPositionTransformedD, RobotPositionTransformedD);
RobotPositionTransformed = TempPositionTransformed;
}
// Make a point for the transformed robot position
point RobotPositionTransformedPoint = point(RobotPositionTransformed[0],RobotPositionTransformed[1]);
// ROS_INFO_STREAM("[Navigation] Found diffeomorphism.");
// Find alpha1, alpha2, beta1, beta2
double alpha1 = -(RobotPositionTransformedD[1][0]*cos(RobotOrientation_) + RobotPositionTransformedD[1][1]*sin(RobotOrientation_));
double beta1 = RobotPositionTransformedDD[0]*pow(cos(RobotOrientation_),2) + (RobotPositionTransformedDD[1]+RobotPositionTransformedDD[2])*sin(RobotOrientation_)*cos(RobotOrientation_) + RobotPositionTransformedDD[3]*pow(sin(RobotOrientation_),2);
double alpha2 = RobotPositionTransformedD[0][0]*cos(RobotOrientation_) + RobotPositionTransformedD[0][1]*sin(RobotOrientation_);
double beta2 = RobotPositionTransformedDD[4]*pow(cos(RobotOrientation_),2) + (RobotPositionTransformedDD[5]+RobotPositionTransformedDD[6])*sin(RobotOrientation_)*cos(RobotOrientation_) + RobotPositionTransformedDD[7]*pow(sin(RobotOrientation_),2);
// Find transformed orientation
double RobotOrientationTransformed = atan2(RobotPositionTransformedD[1][0]*cos(RobotOrientation_)+RobotPositionTransformedD[1][1]*sin(RobotOrientation_), RobotPositionTransformedD[0][0]*cos(RobotOrientation_)+RobotPositionTransformedD[0][1]*sin(RobotOrientation_));
// Read LIDAR data in the model space to account for the known obstacles
LIDARClass LIDARmodel_known;
LIDARmodel_known.RangeMeasurements = LIDAR.RangeMeasurements;
LIDARmodel_known.Angle = LIDAR.Angle;
LIDARmodel_known.Range = LIDAR.Range;
LIDARmodel_known.Infinity = LIDAR.Infinity;
LIDARmodel_known.MinAngle = LIDAR.MinAngle;
LIDARmodel_known.MaxAngle = LIDAR.MaxAngle;
LIDARmodel_known.Resolution = LIDAR.Resolution;
LIDARmodel_known.NumSample = LIDAR.NumSample;
readLIDAR2D(point(RobotPositionTransformed[0], RobotPositionTransformed[1]), RobotOrientationTransformed, KnownObstaclesModel, LIDAR.Range, LIDAR.MinAngle, LIDAR.MaxAngle, LIDAR.NumSample, &LIDARmodel_known);
// ROS_INFO_STREAM("[Navigation] Constructed known model space LIDAR with " << LIDARmodel_known.RangeMeasurements.size() << " rays and " << LIDARmodel_known.Angle.size() << " angles.");
// Translate LIDAR data from the unknown obstacles to the transformed robot state
LIDARClass LIDARmodel_unknown;
LIDARmodel_unknown.RangeMeasurements = LIDAR.RangeMeasurements;
LIDARmodel_unknown.Angle = LIDAR.Angle;
LIDARmodel_unknown.Range = LIDAR.Range;
LIDARmodel_unknown.Infinity = LIDAR.Infinity;
LIDARmodel_unknown.MinAngle = LIDAR.MinAngle;
LIDARmodel_unknown.MaxAngle = LIDAR.MaxAngle;
LIDARmodel_unknown.Resolution = LIDAR.Resolution;
LIDARmodel_unknown.NumSample = LIDAR.NumSample;
translateLIDAR2D(RobotPosition_, RobotOrientation_, point(RobotPositionTransformed[0], RobotPositionTransformed[1]), RobotOrientationTransformed, ObstacleDilation_, &LIDARmodel_unknown);
// ROS_INFO_STREAM("[Navigation] Constructed unknown model space LIDAR with " << LIDARmodel_unknown.RangeMeasurements.size() << " rays and " << LIDARmodel_unknown.Angle.size() << " angles.");
// Build final model LIDAR object
std::vector<double> newRangeMeasurements(LIDAR.RangeMeasurements.size(), 0.0);
for (size_t i = 0; i < LIDAR.RangeMeasurements.size(); i++) {
newRangeMeasurements[i] = std::min(LIDARmodel_known.RangeMeasurements[i], LIDARmodel_unknown.RangeMeasurements[i]);
}
LIDARClass LIDARmodel(newRangeMeasurements, LIDAR.Range-bg::distance(RobotPositionTransformedPoint, RobotPosition_), LIDAR.Infinity, LIDAR.MinAngle, LIDAR.MaxAngle, LIDAR.Resolution);
// ROS_INFO_STREAM("[Navigation] Constructed model space LIDAR with " << LIDARmodel.RangeMeasurements.size() << " rays and " << LIDARmodel.Angle.size() << " angles.");
// Find local freespace; the robot radius can be zero because we have already dilated the obstacles
polygon LF_model = localfreespaceLIDAR2D(RobotPositionTransformedPoint, RobotOrientationTransformed, 0.0, &LIDARmodel);
// ROS_INFO_STREAM("[Navigation] Constructed model freespace.");
// Find projected goal
point LGL_model = localgoal_linearLIDAR2D(RobotPositionTransformedPoint, RobotOrientationTransformed, LF_model, localGoal);
// ROS_INFO_STREAM("[Navigation] Computed linear local goal.");
point LGA1_model = localgoalLIDAR2D(LF_model, localGoal);
// ROS_INFO_STREAM("[Navigation] Computed angular local goal 1.");
point LGA2_model = localgoal_angularLIDAR2D(RobotPositionTransformedPoint, RobotOrientationTransformed, LF_model, localGoal);
// ROS_INFO_STREAM("[Navigation] Computer angular local goal 2.");
point LGA_model(LGA1_model.get<0>(), LGA1_model.get<1>()); // avoid division by zero
// ROS_INFO_STREAM("[Navigation] Computed model space projections.");
// Compute the basis for the virtual control inputs
double tV = (LGL_model.get<0>()-RobotPositionTransformed[0])*cos(RobotOrientationTransformed) + (LGL_model.get<1>()-RobotPositionTransformed[1])*sin(RobotOrientationTransformed);
double tW1 = (LGA_model.get<0>()-RobotPositionTransformed[0])*cos(RobotOrientationTransformed) + (LGA_model.get<1>()-RobotPositionTransformed[1])*sin(RobotOrientationTransformed);
double tW2 = -(LGA_model.get<0>()-RobotPositionTransformed[0])*sin(RobotOrientationTransformed) + (LGA_model.get<1>()-RobotPositionTransformed[1])*cos(RobotOrientationTransformed);
// Compute the basis for transforming to actual control inputs
double e_norm = sqrt(pow((RobotPositionTransformedD[0][0]*cos(RobotOrientation_)+RobotPositionTransformedD[0][1]*sin(RobotOrientation_)),2) + pow((RobotPositionTransformedD[1][0]*cos(RobotOrientation_)+RobotPositionTransformedD[1][1]*sin(RobotOrientation_)),2));
double dksi_dpsi = MatrixDeterminant(RobotPositionTransformedD)/pow(e_norm,2);
double DksiCosSin = (alpha1*beta1 + alpha2*beta2)/pow(e_norm,2);
ROS_WARN_STREAM("[Navigation] Diffeomorphism jacobian determinant is " << MatrixDeterminant(RobotPositionTransformedD) << ", robot position is " << bg::dsv(RobotPosition_) << " and robot positon in model space is " << bg::dsv(RobotPositionTransformedPoint));
// Compute commands by accounting for limits
double LinearCtrlGain, AngularCtrlGain;
std::vector<double> vector_to_check_1 = {LinearGain_, ForwardLinCmdLimit_*e_norm/fabsf(tV), 0.4*AngCmdLimit_*dksi_dpsi*e_norm/(fabsf(tV*DksiCosSin))};
LinearCtrlGain = *std::min_element(vector_to_check_1.begin(), vector_to_check_1.end());
std::vector<double> vector_to_check_2 = {AngularGain_, 0.6*AngCmdLimit_*dksi_dpsi/(fabsf(atan2(tW2,tW1)))};
AngularCtrlGain = *std::min_element(vector_to_check_2.begin(), vector_to_check_2.end());
// Compute virtual and actual inputs
double dV_virtual = LinearCtrlGain*tV;
double LinearCmd = dV_virtual/e_norm;
double dW_virtual = AngularCtrlGain*atan2(tW2,tW1);
double AngularCmd = (dW_virtual-LinearCmd*DksiCosSin)/dksi_dpsi;
// Stop if the distance from the goal is less than delta
if (bg::distance(RobotPosition_, localGoal) < Tolerance_) {
Approached_ = true;
}
if (Approached_) {
if (fabsf(RobotOrientation_-localTargetOrientation) > 0.1) {
LinearCmd = 0.0;
AngularCmd = 1.0*(fmodf(localTargetOrientation,M_PI)-fmodf(RobotOrientation_,M_PI));
ROS_WARN_STREAM("[Navigation] Aligning with object...");
} else {
ROS_WARN_STREAM("[Navigation] Successfully navigated to goal and stopped to jump...");
publish_behavior_id(BEHAVIOR_STAND);
ros::Duration(5.0).sleep();
publish_behavior_id(BEHAVIOR_SIT);
}
}
// Apply limits
if (LinearCmd > ForwardLinCmdLimit_) LinearCmd = ForwardLinCmdLimit_;
if (LinearCmd < BackwardLinCmdLimit_) LinearCmd = BackwardLinCmdLimit_;
if (AngularCmd < -AngCmdLimit_) AngularCmd = -AngCmdLimit_;
if (AngularCmd > AngCmdLimit_) AngularCmd = AngCmdLimit_;
// Publish twist
publish_twist(LinearCmd, AngularCmd);
// Print debug information
if (DebugFlag_) {
std::cout << "Local free space in model space: " << bg::dsv(LF_model) << std::endl;
std::cout << "Local linear goal in model space: " << bg::dsv(LGL_model) << std::endl;
std::cout << "Local angular goal 1 in model space: " << bg::dsv(LGA1_model) << std::endl;
std::cout << "Local angular goal 2 in model space: " << bg::dsv(LGA2_model) << std::endl;
std::cout << "Local angular goal in model space: " << bg::dsv(LGA_model) << std::endl;
std::cout << "Robot position in model space: " << bg::dsv(RobotPositionTransformedPoint) << std::endl;
}
// Print time
ROS_WARN_STREAM("[Navigation] Linear command is " << LinearCmd << " and angular command is " << AngularCmd);
ROS_WARN_STREAM("[Navigation] Command update for " << int(localDiffeoTreeArray.size()) << " polygons in " << ros::Time::now().toSec()-before_time << " seconds.");
return;
}
private:
// Nodehandle
ros::NodeHandle nh_;
// Parameters
std::string pub_twist_topic_;
std::string pub_behaviorID_topic_;
std::string pub_behaviorMode_topic_;
std::string sub_laser_topic_;
std::string sub_robot_topic_;
std::string sub_semantic_topic_;
std::string world_frame_id_;
std::string odom_frame_id_;
std::string laser_frame_id_;
std::string target_object_;
double target_object_length_;
double target_object_width_;
ros::Publisher pub_behaviorID_;
ros::Publisher pub_behaviorMode_;
ros::Publisher pub_twist_;
ros::Publisher pub_semantic_map_;
double RobotRadius_;
double ObstacleDilation_;
double WalkHeight_;
double AllowableRange_;
double CutoffRange_;
double ForwardLinCmdLimit_;
double BackwardLinCmdLimit_;
double AngCmdLimit_;
double RFunctionExponent_;
double Epsilon_;
double VarEpsilon_;
double Mu1_;
double Mu2_;
double DiffeoTreeUpdateRate_;
DiffeoParamsClass DiffeoParams_;
double LinearGain_;
double AngularGain_;
double Goal_x_ = 0.0;
double Goal_y_ = 0.0;
point Goal_;
double TargetOrientation_ = 0.0;
double Tolerance_;
double LowpassCutoff_;
double LowpassSampling_;
double LowpassOrder_;
double LowpassSamples_;
point RobotPosition_ = point(0.0, 0.0);
double RobotOrientation_ = 0.0;
double RobotPitch_ = 0.0;
std::vector<polygon> PolygonList_;
std::vector<std::vector<PolygonClass>> DiffeoTreeArray_;
double DiffeoTreeUpdateTime_ = 0.0;
bool DebugFlag_ = false;
bool Approached_ = false;
tf::TransformListener listener_;
std::mutex mutex_;
};
int main(int argc, char** argv) {
// ROS setups
ros::init(argc, argv, "navigation_semantic");
// ROS nodehandle
ros::NodeHandle nh("~");
// Start navigation node
SemanticNavigationNode semanticNavigationNode(&nh);
return 0;
}