Skip to content

Fruit classification in the sense of non-person market.

Notifications You must be signed in to change notification settings

LaviLiu/fruit-classification

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 

Repository files navigation

fruit-classification

Fruit classification in the sense of non-person market.

The Original imges is as follow:

img_10 20170307170522

The Segmented images is as follow:

Seg20170307144225

Dataset

There are totally have 26 classes. Every class have 81 to 148 samples. The resolution is 720 * 1280.

Main ideal

1.Segment foreground from the image. We will use Matlab complete this task.
2.Extract features from segmented iamges. The color features are more important. We will use python complete this task.
3.Classification. We will use python complete this task.

The Result

The accuracy of SVM: 0.744196256117 precision recall f1-score support

      0       0.75      0.92      0.83        26
      1       0.73      0.93      0.82        44
      2       1.00      0.93      0.96        28
      3       0.62      0.84      0.71        37
      4       0.47      0.81      0.59        27
      5       0.79      0.77      0.78        48
      6       0.72      0.81      0.76        42
      7       0.73      0.78      0.75        45
      8       0.77      0.97      0.86        31
      9       0.64      0.60      0.62        35
     10       1.00      0.94      0.97        32
     11       0.95      0.90      0.92        41
     12       0.73      0.35      0.48        31
     13       0.40      0.10      0.16        41
     14       0.97      1.00      0.99        34
     15       0.65      0.57      0.61        53
     16       0.62      1.00      0.77        20
     17       0.96      1.00      0.98        44
     18       1.00      0.91      0.96        35
     19       1.00      1.00      1.00        23
     20       0.51      0.44      0.47        55
     21       0.59      0.53      0.56        36
     22       0.73      0.77      0.75        31
     23       0.66      0.52      0.58        52
     24       0.42      0.59      0.49        34
     25       0.79      0.61      0.69        38

avg / total 0.73 0.73 0.72 963

accuracy_score: 0.730010384216

About

Fruit classification in the sense of non-person market.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published