Skip to content

SCALAE: Formatting the Landscape: Spatial conditional GAN for varying population in satellite imagery

Notifications You must be signed in to change notification settings

LendelTheGreat/SCALAE

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SCALAE

Training and evaluation code for our paper: Formatting the Landscape: Spatial conditional GAN for varying population in satellite imagery

We make additions to the existing ALAE architecture (based on StyleGAN), creating a spatially conditional version: SCALAE. This method allows us to explicitly disentangle a 2D input map from the model's latent vector and thus use the 2D input to guide the image generation. We use this method to generate satellite imagery from custom 2D population maps.

Arxiv link

Interactive colab

We are very thankful to the original ALAE repository for the preprocessing and training code. For training setup please follow the instructions in the original readme

About

SCALAE: Formatting the Landscape: Spatial conditional GAN for varying population in satellite imagery

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 97.6%
  • Python 2.4%