Skip to content

The experimental implementation for the paper Wasserstein Adversarially Regularized Graph Autoencoder

License

Notifications You must be signed in to change notification settings

LeonResearch/WARGA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 

Repository files navigation

WARGA

The experiment implementation (PyTorch) for paper Wasserstein Adversarially Regularized Graph Autoencoder.

WARGA

Requirements

  • Pytorch 1.8.1
  • Python 3.8
  • scikit-learn
  • networkx
  • munkres
  • pickle
  • scipy

Run

  • WARGA.py for WARGA-WC.
  • WARGA GP.py for WARGA-GP.
  • WARGA-GP Clustering Notebook.ipynb for WARGA-GP clustering results reproduction.
  • WARGA-GP Link Prediction Notebook.ipynb for WARGA-GP link prediction results reproduction.
  • WARGA-WC Clustering Notebook.ipynb for WARGA-WC clustering results reproduction.
  • WARGA-WC Link Prediction Notebook.ipynb for WARGA-WC link prediction results reproduction.

About

The experimental implementation for the paper Wasserstein Adversarially Regularized Graph Autoencoder

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published