This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.
- Download the raw data of NTU RGB+D and PKU-MMD.
- For NTU RGB+D dataset, preprocess data with
tools/ntu_gendata.py
. For PKU-MMD dataset, preprocess data withtools/pku_part1_gendata.py
. - Then downsample the data to 50 frames with
feeder/preprocess_ntu.py
andfeeder/preprocess_pku.py
. - If you don't want to process the original data, download the file folder in Google Drive action_dataset or BaiduYun link action_dataset, code: 0211. NTU-120 is also provided: NTU-120-frame50.
# Install torchlight
$ cd torchlight
$ python setup.py install
$ cd ..
# Install other python libraries
$ pip install -r requirements.txt
Example for unsupervised pre-training of 3s-AimCLR. You can change some settings of .yaml
files in config/ntu60/pretext
folder.
# train on NTU RGB+D xview joint stream
$ python main.py pretrain_aimclr --config config/ntu60/pretext/pretext_aimclr_xview_joint.yaml
# train on NTU RGB+D xview motion stream
$ python main.py pretrain_aimclr --config config/ntu60/pretext/pretext_aimclr_xview_motion.yaml
# train on NTU RGB+D xview bone stream
$ python main.py pretrain_aimclr --config config/ntu60/pretext/pretext_aimclr_xview_bone.yaml
Example for linear evaluation of 3s-AimCLR. You can change .yaml
files in config/ntu60/linear_eval
folder.
# Linear_eval on NTU RGB+D xview
$ python main.py linear_evaluation --config config/ntu60/linear_eval/linear_eval_aimclr_xview_joint.yaml
$ python main.py linear_evaluation --config config/ntu60/linear_eval/linear_eval_aimclr_xview_motion.yaml
$ python main.py linear_evaluation --config config/ntu60/linear_eval/linear_eval_aimclr_xview_bone.yaml
We release several trained models in released_model. The performance is better than that reported in the paper. You can download them and test them with linear evaluation by changing weights
in .yaml
files.
For three-streams results, you can train three separate models and ensemble the results, or you can use three models in one .py
file, similar to net/crossclr_3views.py
.
Model | NTU 60 xsub (%) | NTU 60 xview (%) | PKU-MMD Part I (%) |
---|---|---|---|
AimCLR-joint | 74.34 | 79.68 | 83.43 |
AimCLR-motion | 68.68 | 71.83 | 72.00 |
AimCLR-bone | 71.87 | 77.02 | 82.03 |
3s-AimCLR | 79.18 | 84.02 | 87.79 |
The t-SNE visualization of the embeddings after AimCLR pre-training on NTU60-xsub.
Please cite our paper if you find this repository useful in your resesarch:
@inproceedings{guo2022aimclr,
Title= {Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition},
Author= {Tianyu, Guo and Hong, Liu and Zhan, Chen and Mengyuan, Liu and Tao, Wang and Runwei, Ding},
Booktitle= {AAAI},
Year= {2022}
}
The framework of our code is extended from the following repositories. We sincerely thank the authors for releasing the codes.
This project is licensed under the terms of the MIT license.