Skip to content

Lifelong-ML/Mendez2020Compositional

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Compositional Lifelong Learning

This is the source code used for Lifelong Learning of Compositional Structures (Mendez and Eaton, 2021).

This package contains the implementations of nine algorithms that conform to our framework for compositional learning: ER, EWC, and VAN with factorized linear models, soft layer ordering, and soft gating. Deep learning variants are implemented with and without dynamic addition of new modules. Implementations for all baselines in the paper are also included: jointly trained, no-components, and frozen components.

Installation

All dependencies are listed in the env.yml file (Linux). To install, create a Conda environment with:

$ conda env create -f env.yml

Activate the environment with:

$ conda activate 2020-compositional

You should be able to run any of the experiment scripts at that point.

Code structure

The code structure is the following:

  • experiment_script.py -- Script for running multiple experiments with soft layer ordering in parallel
  • experiment_script_gated.py -- Script for running multiple experiments with soft gating in parallel
  • experiment_script_linear.py -- Script for running multiple experiments with linear factored model in parallel
  • experiment_script_limiteddata.py -- Script for running multiple experiments in parallel varying the number of data points
  • lifelong_experiment.py -- Experiment script for running training. Takes as argument the data set, number of tasks, number of random seeds, and all hyper-parameters
  • lifelong_experiment_linear.py -- Same as lifelong_experiment.py but ignores the batch_size argument and uses dataset.max_batch_size instead
  • lifelong_experiment_pixelmnist.py -- Experiment script for training the pixel visualization MNIST experiments
  • make_lifelong_table.py -- Make the tables for this README
  • datasets/
    • DATASET_NAME -- each directory contains the raw data, the processing code we used (where applicable), and the processed data.
    • datasets.py -- a Python class wrapper for each data set, which creates a torch.utils.data.TensorDataset for each task in the data set.
  • learners/
    • base_learning_classes.py -- Base classes for compositional, dynamic + compositional, joint, and no-components agents.
    • *_compositional.py -- Compositional agents
    • *_dynamic.py -- Dynamic + compositional agents
    • *_joint.py -- Jointly trained baselines
    • *_nocomponents.py -- No-components baselines
    • er_*.py -- ER-based agents
    • ewc_*.py -- EWC-based agents
    • van_*.py -- VAN-based agents
    • fm_*.py -- Frozen components agents
  • models/
    • base_net_classes.py -- Base classes for deep compositional models
    • linear.py -- No-components linear model
    • linear_factored.py - Factored linear model
    • cnn*.py -- Convolutional nets
    • mlp*.py -- Fully-connected nets
    • no suffix -- No-components baseline models
    • *_soft_lifelong.py -- Soft layer ordering
    • *_soft_lifelong_dynamic.py -- Soft layer ordering supporting dynamic component additions
    • *_soft_gated_lifelong.py -- Soft gating net
    • *_soft_gated_lifelong_dynamic -- Soft gating net supporting dynamic component additions
    • mlp_soft_lifelong_pixelmnist.py -- MLP with soft ordering for pixel visualization experiments on MNIST
  • utils/
    • kfac_ewc.py -- Kronecker-factored Hessian approximator for EWC, implemented as a PyTorch optimizer/preconditioner
    • make_*.py -- Code for creating the different figures throughout the paper
    • replay_buffers.py -- Implementation of the replay buffers for ER-based algorithms as a torch.utils.data.TensorDataset

Reproducing results

Tables 1 and 2 contain the main results in the paper.

To reproduce the soft layer ordering results, execute:

$ python experiment_script.py
$ python make_lifelong_table.py -T 10 10 20 20 50 -d MNIST Fashion CUB CIFAR Omniglot -e 100 -alg er_compositional er_joint er_nocomponents er_dynamic ewc_compositional ewc_joint ewc_nocomponents ewc_dynamic van_compositional van_nocomponents van_joint van_dynamic fm_compositional fm_dynamic -n 10 -r results/

And to reproduce the soft gating results, execute:

$ python experiment_script_gated.py
$ python make_lifelong_table.py -T 10 10 20 50 -d MNIST Fashion CIFAR Omniglot -e 100 -alg er_compositional er_joint er_dynamic ewc_compositional ewc_joint ewc_dynamic van_compositional van_joint van_dynamic fm_compositional fm_dynamic -n 10 -r results/gated/

Table 1: Accuracy of all algorithms using soft layer ordering.

Base Algorithm MNIST Fashion CUB CIFAR Omniglot
ER Dyn. + Comp. 97.6±0.2% 96.6±0.4% 79.0±0.5% 77.6±0.3% 71.7±0.5%
ER Compositional 96.5±0.2% 95.9±0.6% 80.6±0.3% 58.7±0.5% 71.2±1.0%
ER Joint 94.2±0.3% 95.1±0.7% 77.7±0.5% 65.8±0.4% 70.7±0.3%
ER No Comp. 91.2±0.3% 93.6±0.6% 44.0±0.9% 51.6±0.6% 43.2±4.2%
EWC Dyn. + Comp. 97.2±0.2% 96.5±0.4% 73.9±1.0% 77.6±0.3% 71.5±0.5%
EWC Compositional 96.7±0.2% 95.9±0.6% 73.6±0.9% 48.0±1.7% 53.4±5.2%
EWC Joint 66.4±1.4% 69.6±1.6% 65.4±0.9% 42.9±0.4% 58.6±1.1%
EWC No Comp. 66.0±1.1% 68.8±1.1% 50.6±1.2% 36.0±0.7% 68.8±0.4%
VAN Dyn. + Comp. 97.3±0.2% 96.4±0.4% 73.0±0.7% 73.0±0.4% 69.4±0.4%
VAN Compositional 96.5±0.2% 95.9±0.6% 74.5±0.7% 54.8±1.2% 68.9±0.9%
VAN Joint 67.4±1.4% 69.2±1.9% 65.1±0.7% 43.9±0.6% 63.1±0.9%
VAN No Comp. 64.4±1.1% 67.0±1.3% 49.1±1.6% 36.6±0.6% 68.9±1.0%
FM Dyn. + Comp. 99.1±0.0% 97.3±0.3% 78.3±0.4% 78.4±0.3% 71.0±0.4%
FM Compositional 84.1±0.8% 86.3±1.3% 80.1±0.3% 48.8±1.6% 63.0±3.3%

Table 2: Accuracy of all algorithms using soft gating. No Comp. results are the same as in Table 1.

Base Algorithm MNIST Fashion CIFAR Omniglot
ER Dyn. + Comp. 98.2±0.1% 97.1±0.4% 74.9±0.3% 73.7±0.3%
ER Compositional 98.0±0.2% 97.0±0.4% 75.9±0.4% 73.9±0.3%
ER Joint 93.8±0.3% 94.6±0.7% 72.0±0.4% 72.6±0.2%
ER No Comp. 91.2±0.3% 93.6±0.6% 51.6±0.6% 43.2±4.2%
EWC Dyn. + Comp. 98.2±0.1% 97.0±0.4% 76.6±0.5% 73.6±0.4%
EWC Compositional 98.0±0.2% 97.0±0.4% 76.9±0.3% 74.6±0.2%
EWC Joint 68.6±0.9% 69.5±1.8% 49.9±1.1% 63.5±1.2%
EWC No Comp. 66.0±1.1% 68.8±1.1% 36.0±0.7% 68.8±0.4%
VAN Dyn. + Comp. 98.2±0.1% 97.1±0.4% 66.6±0.7% 69.1±0.9%
VAN Compositional 98.0±0.2% 96.9±0.5% 68.2±0.5% 72.1±0.3%
VAN Joint 67.3±1.7% 66.4±1.9% 51.0±0.8% 65.8±1.3%
VAN No Comp. 64.4±1.1% 67.0±1.3% 36.6±0.6% 68.9±1.0%
FM Dyn. + Comp. 98.4±0.1% 97.0±0.4% 77.2±0.3% 74.0±0.4%
FM Compositional 94.8±0.4% 96.3±0.4% 77.2±0.3% 74.1±0.3%

Citing this work

If you use this work, please cite our paper

@inproceedings{
    mendez2021lifelong,
    title={Lifelong Learning of Compositional Structures},
    author={Jorge A Mendez and Eric Eaton},
    booktitle={International Conference on Learning Representations},
    year={2021},
    url={https://openreview.net/forum?id=ADWd4TJO13G}
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published