AgriSORT: A Simple Online Real-time Tracking-by-Detection framework for robotics in precision agriculture
Repository for the paper AgriSORT: A Simple Online Real-time Tracking-by-Detection framework for robotics in precision agriculture, accepted at ICRA 2024. We propose a novel Multiple Object Tracking (MOT) algorithm specific for usage in precision agriculture. We also present a novel dataset on multiple objects tracking in the context of precision agriculture based on table grapes captured using a RealSense d435i camera.
AgriSORT: A Simple Online Real-time Tracking-by-Detection framework for robotics in precision agriculture
Leonardo Saraceni, Ionut M. Motoi, Daniele Nardi, Thomas A. Ciarfuglia https://arxiv.org/abs/2309.13393 (Temporary, accepted to ICRA 2024, soon to appear)
To test the tool is necessary to clone the repository and install the required dependencies.
-
pip3 install -r requirements.txt
-
git clone https://github.com/ultralytics/yolov5 # clone cd yolov5 pip install -r requirements.txt # install
-
Download weights from the Link:
Alternatively you can download them via command line:
gdown --folder --remaining-ok https://drive.google.com/drive/folders/1Kl3srt2J0u48Gyx6M1YvrqMnCTNrQz-W?usp=drive_link
We provide a small demo to :
-
Download the dataset from the Link:
Alternatively you can download them via command line:
gdown --folder --remaining-ok https://drive.google.com/drive/folders/1Kl3srt2J0u48Gyx6M1YvrqMnCTNrQz-W?usp=drive_link
-
By default the tracker runs on the CloseUp1 sequence.
python3 agriSORT.py
To visualize all the possible settings, visualize help:
python3 agriSORT.py --help
@misc{saraceni2023agrisort,
title={AgriSORT: A Simple Online Real-time Tracking-by-Detection framework for robotics in precision agriculture},
author={Leonardo Saraceni and Ionut M. Motoi and Daniele Nardi and Thomas A. Ciarfuglia},
year={2023},
eprint={2309.13393},
archivePrefix={arXiv},
primaryClass={cs.CV}
}