-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathmultiscalesrdata.py
176 lines (152 loc) · 5.5 KB
/
multiscalesrdata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os
import glob
from data import common
import pickle
import numpy as np
import imageio
import torch
import torch.utils.data as data
class SRData(data.Dataset):
def __init__(self, args, name='', train=True, benchmark=False):
self.args = args
self.name = name
self.train = train
self.split = 'train' if train else 'test'
self.do_eval = True
self.benchmark = benchmark
self.scale = args.scale
self.idx_scale = 0
data_range = [r.split('-') for r in args.data_range.split('/')]
if train:
data_range = data_range[0]
else:
if args.test_only and len(data_range) == 1:
data_range = data_range[0]
else:
data_range = data_range[1]
self.begin, self.end = list(map(lambda x: int(x), data_range))
self._set_filesystem(args.dir_data)
if args.ext.find('img') < 0:
path_bin = os.path.join(self.apath, 'bin')
os.makedirs(path_bin, exist_ok=True)
list_hr = self._scan()
if args.ext.find('bin') >= 0:
# Binary files are stored in 'bin' folder
# If the binary file exists, load it. If not, make it.
list_hr = self._scan()
self.images_hr = self._check_and_load(
args.ext, list_hr, self._name_hrbin()
)
else:
if args.ext.find('img') >= 0 or benchmark:
self.images_hr = list_hr
elif args.ext.find('sep') >= 0:
os.makedirs(
self.dir_hr.replace(self.apath, path_bin),
exist_ok=True
)
self.images_hr = []
for h in list_hr:
b = h.replace(self.apath, path_bin)
b = b.replace(self.ext[0], '.pt')
self.images_hr.append(b)
self._check_and_load(
args.ext, [h], b, verbose=True, load=False
)
if train:
self.repeat = args.test_every // (len(self.images_hr) // args.batch_size)
# Below functions as used to prepare images
def _scan(self):
names_hr = sorted(
glob.glob(os.path.join(self.dir_hr, '*' + self.ext[0]))
)
print(len(names_hr))
return names_hr
def _set_filesystem(self, dir_data):
self.apath = os.path.join(dir_data, self.name)
self.dir_hr = os.path.join(self.apath, 'HR')
self.dir_lr = os.path.join(self.apath, 'LR_bicubic')
self.ext = ('.png', '.png')
def _name_hrbin(self):
return os.path.join(
self.apath,
'bin',
'{}_bin_HR.pt'.format(self.split)
)
def _name_lrbin(self, scale):
return os.path.join(
self.apath,
'bin',
'{}_bin_LR_X{}.pt'.format(self.split, scale)
)
def _check_and_load(self, ext, l, f, verbose=True, load=True):
if os.path.isfile(f) and ext.find('reset') < 0:
if load:
if verbose: print('Loading {}...'.format(f))
with open(f, 'rb') as _f:
ret = pickle.load(_f)
return ret
else:
return None
else:
if verbose:
if ext.find('reset') >= 0:
print('Making a new binary: {}'.format(f))
else:
print('{} does not exist. Now making binary...'.format(f))
b = [{
'name': os.path.splitext(os.path.basename(_l))[0],
'image': imageio.imread(_l)
} for _l in l]
with open(f, 'wb') as _f:
pickle.dump(b, _f)
return b
def __getitem__(self, idx):
hr, filename = self._load_file(idx)
hr = self.get_patch(hr)
hr = [common.set_channel(img, n_channels=self.args.n_colors) for img in hr]
hr_tensor = [common.np2Tensor(img, rgb_range=self.args.rgb_range)
for img in hr]
return torch.stack(hr_tensor, 0), filename
def __len__(self):
if self.train:
return len(self.images_hr) * self.repeat
else:
return len(self.images_hr)
def _get_index(self, idx):
if self.train:
return idx % len(self.images_hr)
else:
return idx
def _load_file(self, idx):
idx = self._get_index(idx)
f_hr = self.images_hr[idx]
if self.args.ext.find('bin') >= 0:
filename = f_hr['name']
hr = f_hr['image']
else:
filename, _ = os.path.splitext(os.path.basename(f_hr))
if self.args.ext == 'img' or self.benchmark:
hr = imageio.imread(f_hr)
elif self.args.ext.find('sep') >= 0:
with open(f_hr, 'rb') as _f:
hr = np.load(_f)[0]['image']
return hr, filename
def get_patch(self, hr):
scale = self.scale[self.idx_scale]
if self.train:
out = []
hr = common.augment(hr) if not self.args.no_augment else hr
# extract two patches from each image
for _ in range(2):
hr_patch = common.get_patch(
hr,
patch_size=self.args.patch_size,
scale=scale
)
out.append(hr_patch)
else:
out = [hr]
return out
def set_scale(self, idx_scale):
self.idx_scale = idx_scale