Skip to content

PyTorch Implementation of "HACL-Net: Hierarchical Attention and Contrastive Learning Network for MRI-Based Placenta Accreta Spectrum Diagnosis"

Notifications You must be signed in to change notification settings

LouieBHLu/HACL-Net

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 

Repository files navigation

HACL-Net python

This is the pytorch implementation of MICCAI 2023, "HACL-Net: Hierarchical Attention and Contrastive Learning Network for MRI-Based Placenta Accreta Spectrum Diagnosis".


Citation

Lu, M., Wang, T., Zhu, H., Li, M. (2023). HACL-Net: Hierarchical Attention and Contrastive Learning Network for MRI-Based Placenta Accreta Spectrum Diagnosis. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14226. Springer, Cham. https://doi.org/10.1007/978-3-031-43990-2_29

Dependencies

Our experiments are implemented on the following packages. It is recommended to use anaconda to manage your python packages.

  • Ubuntu 16.04
  • Python 3.7.11
  • PyTorch 1.10 / torchvision 0.11.2
  • NVIDIA CUDA 11.3
  • Numpy 1.19.5
  • scikit-learn 1.0.2
  • tqdm 4.62.3
  • pandas 1.3.5

Train

  1. Save all patient information, including pid, img_path, label in a csv file.

  2. Save each patient's all MRI slices and the corresponding patient-level label into one npz file. For example, a patient with pid=1,should correspond to a file named 1.npz.

  3. Specify your hyperparamter in train/main.py and train the model.

    bash bin/train.sh

About

PyTorch Implementation of "HACL-Net: Hierarchical Attention and Contrastive Learning Network for MRI-Based Placenta Accreta Spectrum Diagnosis"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published