This is the pytorch implementation of MICCAI 2023, "HACL-Net: Hierarchical Attention and Contrastive Learning Network for MRI-Based Placenta Accreta Spectrum Diagnosis".
Lu, M., Wang, T., Zhu, H., Li, M. (2023). HACL-Net: Hierarchical Attention and Contrastive Learning Network for MRI-Based Placenta Accreta Spectrum Diagnosis. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14226. Springer, Cham. https://doi.org/10.1007/978-3-031-43990-2_29
Our experiments are implemented on the following packages. It is recommended to use anaconda to manage your python packages.
- Ubuntu 16.04
- Python 3.7.11
- PyTorch 1.10 / torchvision 0.11.2
- NVIDIA CUDA 11.3
- Numpy 1.19.5
- scikit-learn 1.0.2
- tqdm 4.62.3
- pandas 1.3.5
-
Save all patient information, including
pid
,img_path
,label
in a csv file. -
Save each patient's all MRI slices and the corresponding patient-level label into one npz file. For example, a patient with
pid=1
,should correspond to a file named1.npz
. -
Specify your hyperparamter in
train/main.py
and train the model.bash bin/train.sh