Skip to content

LoveFromSea/AOD-Net

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AOD-Net by Pytorch

这是AOD-Net : All-in-One Network for Dehazing的一个实现在Python3上,Pytorch。该模型可以去除雾霾、烟雾甚至水的杂质。

The repository includes: *AOD网络的源代码 *基于[NYU Depth V2]的合成模糊图像构建代码,下面可以下载 *hazy数据集的训练代码 *AOD网络的预训练模型

Requirements

Python 3.6, Pytorch 0.4.0 and other common packages

NYU Depth V2

用来构建雾霾图像,我这里上传百度云了:

这里不提供我修改的代码了,源代码需要的话直接去人家Github上找吧.以下是我可以运行的命令行参数更改。他有几个包有问题。但是最近搞得太忙了,自己的训练当时用一半数据集跑出来效果太差了。(老板不给服务器,用1060 6G跑的,TAT)

Training Part

这一块如何使用我会更新CSDN说明一下的

Dateset Setup

  1. Clone this repository
  2. Create dataset from the repository root directory
    $ cd make_dataset
    $ python create_train.py --nyu {Your NYU Depth V2 path} --dataset {Your trainset path}
  3. Random pick 3,169 pictures as validation set
    $ python random_select.py --trainroot {Your trainset path} --valroot {Your valset path}

Start to training

  1. training AOD-Net
    $ python train.py --dataroot {Your trainset path} --valDataroot {Your valset path} --cuda

Testing Part

  1. test hazy image on AOD-Net
    $ python test.py --input_image /test/canyon1.jpg  --model /model_pretrained/AOD_net_epoch_relu_10.pth --output_filename /result/canyon1_dehaze.jpg --cuda

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages