Skip to content

MAC-AutoML/OMPQ

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

OMPQ: Orthogonal Mixed Precision Quantization

This repository contains all the experiments of our paper "OMPQ: Orthogonal Mixed Precision Quantization". It also includes some base models and pretrain models which we list in the paper.

Requirements

  • DALI (for accelerating data processing)
  • Apex (for distributed running)
  • other requirements, running requirements.txt
pip install -r requirements.txt

Running

To start running our code to get the optimal bit configuration, you need to download the basemodel, and copy the path of base model to "--path".

Bit Configuration

#!/usr/bin/env bash
python3 -m torch.distributed.launch --nproc_per_node=1 feature_extract.py \
 --model "resnet18" \
 --path "/Path/to/Base_model" \      # pretrained base model
 --dataset "imagenet" \
 --save_path '/Path/to/Dataset/' \   # Dataset path
 --beta 10.0 \                       # Hyper-parameter for bit difference
 --model_size 6.7 \                  # Target model size
 --quant_type "QAT"                  # Post-Training Quantization(PTQ) or Quantization-Aware Training(QAT)

or

bash ./mixed_bit/run_scripts/quant_resnet18.sh

QAT

Because of random seed, bit configuration obtained through feature extraction may have a little difference from ours. Our bit configurations are given in bit_config.py. Our quantized models and logs are also given in this link.

#!/usr/bin/env bash
python quant_train.py \
 -a resnet18 \
 --epochs 90 \
 --lr 0.0001 \
 --batch_size 128 \
 --data /Path/to/Dataset/ \
 --save_path /Path/to/Save_quant_model/ \
 --act_range_momentum=0.99 \
 --wd 1e-4 \
 --data_percentage 1 \
 --pretrained \
 --fix_BN \
 --checkpoint_iter -1 \
 --quant_scheme modelsize_6.7_a6_75B

or

bash ./QAT/run_scripts/train_resnet18.sh

PTQ

For the post-training quantization, we only require a few GPU hours to get the quantization model by running codes as follows:

python main_imagenet.py --data_path /Path/to/Dataset/ --arch resnet18 --n_bits_w 2 --channel_wise --n_bits_a 8 --act_quant --test_before_calibration --bit_cfg "[4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 3, 3, 4, 4, 3, 3, 3, 3]"

or

bash ./PTQ/run_scripts/train_resnet18.sh

Experimental Results

Table 1 and Table 2 in "OMPQ: Orthogonal Mixed Precision Quantization".

QAT

Model W/A Model Size(Mb) BOPs(G) Top-1(%) Download
ResNet-18 mixed/8 6.7 97 72.30 resnet18_6.7Mb_97BOPs
ResNet-18 mixed/6 6.7 75 72.08 resnet18_6.7Mb_75BOPs
ResNet-50 mixed/5 16.0 141 76.20 resnet50_16.0Mb_141BOPs
ResNet-50 mixed/5 18.7 156 76.28 resnet50_18.7Mb_156BOPs

PTQ

Model W/A Model Size(Mb) Top-1(%)
ResNet-18 mixed/8 4.5 69.73
ResNet-18 mixed/4 5.5 69.38
ResNet-18 mixed/8 4.0 69.34
MobileNetV2 mixed/8 1.3 69.51
MobileNetV2 mixed/8 1.5 71.27

Mixed precision quantization comparisons of OMPQ and BRECQ on ResNet-18 and MobileNetV2 are as follows,

 Mixed precision quantization comparison

Related Works

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published