Implement of our paper "Single Image Super-Resolution UsingSqueeze-and-Excitation Networks"
For more fair comparison with the state-of-art method using MATLAB, we use same script to do datasets generate and then export them with HDF5 file. So the model in PyTorch could receive same date as previous method done.
-
For training, download DIV2K dataset and place the folder into prepare. Then run the
generate_train.m
using MATLAB. A big file in train.h5 will appear after it down. -
For testing, download Testing datasets, and change the variable
folder
to the place where test datasets in. Then run it in Matlab. A folder namedtestdatasets
will appear. -
For real time loss monitor, we use tensorboardX
usage: train.py [-h] [--batchSize BATCHSIZE] [--blocks BLOCKS]
[--nEpochs NEPOCHS] [--lr LR] [--step STEP] [--cuda]
[--resume RESUME] [--start-epoch START_EPOCH]
[--threads THREADS] [--momentum MOMENTUM]
[--weight-decay WEIGHT_DECAY] [--pretrained PRETRAINED]
PyTorch SrSENet
optional arguments:
-h, --help show this help message and exit
--batchSize BATCHSIZE
training batch size
--blocks BLOCKS Blocks nums of SrSEBlock
--nEpochs NEPOCHS number of epochs to train for
--lr LR Learning Rate. Default=1e-4
--step STEP Sets the learning rate to the initial LR decayed by
momentum every n epochs, Default: n=10
--cuda Use cuda?
--resume RESUME Path to checkpoint (default: none)
--start-epoch START_EPOCH
Manual epoch number (useful on restarts)
--threads THREADS Number of threads for data loader to use, Default: 1
--momentum MOMENTUM Momentum, Default: 0.9
--weight-decay WEIGHT_DECAY, --wd WEIGHT_DECAY
weight decay, Default: 1e-4
--pretrained PRETRAINED
path to pretrained model (default: none)
PyTorch SrSENet
optional arguments:
-h, --help show this help message and exit
--checkpoint CHECKPOINT
path to load model checkpoint
--test TEST path to load test images
Datasets | VDSR | LapSRN | SrSENet |
---|---|---|---|
BSDS100(x8) | 24.37dB | 24.54dB | 24.59dB |
Urban100(x8) | 21.54dB | 21.81dB | 21.88dB |
Manga109(x8) | 22.83dB | 23.39dB | 23.54dB |
VDSR | LapSRN | SrSENet |
---|---|---|