Skip to content

MM-FIRE/FIRE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

drawing FIRE: A Dataset for Feedback Integration and Refinement Evaluation of Multimodal Models

Install

If you are not using Linux, do NOT proceed, see instructions for macOS and Windows.

  1. Clone this repository and navigate to FIRE folder
git clone https://github.com/MM-FIRE/FIRE
cd FIRE
  1. Install Package
conda create -n llava python=3.10 -y
conda activate llava
pip install --upgrade pip  # enable PEP 660 support
pip install -e .
  1. Install additional packages for training cases
pip install -e ".[train]"
pip install flash-attn --no-build-isolation

Upgrade to latest code base

git pull
pip install -e .

# if you see some import errors when you upgrade,
# please try running the command below (without #)
# pip install flash-attn --no-build-isolation --no-cache-dir

Dataset

The FIRE-100K, FIRE-1M, and FIRE-Bench datasets can be accessed at the following Dataset page.

Checkpoints

The checkpoints of FIRE-LLaVA can be accessed at Model .

Training

We used DeepSpeed Zero3 to train our models.

Student Model

deepspeed --master_port 60000 llava/train/train_mem.py \
    --lora_enable True --lora_r 64 --lora_alpha 256 \
    --lora_modules q_proj,k_proj \
    --deepspeed ./scripts/zero3.json \
    --model_name_or_path  Lin-Chen/open-llava-next-llama3-8b \
    --version llama_v3_student \
    --data_path data/path/to/FIRE-Dataset-Student \
    --image_folder data/path/to/images \
    --vision_tower openai/clip-vit-large-patch14-336 \
    --mm_projector_type mlp2x_gelu \
    --mm_vision_select_layer -2 \
    --mm_use_im_start_end False \
    --mm_use_im_patch_token False \
    --image_aspect_ratio anyres \
    --mm_patch_merge_type spatial_unpad \
    --group_by_modality_length True \
    --bf16 True \
    --output_dir ./checkpoints/llava-next-llama-3-8b-student-lora-merged \
    --num_train_epochs 1 \
    --per_device_train_batch_size 8 \
    --per_device_eval_batch_size 4 \
    --gradient_accumulation_steps 1 \
    --evaluation_strategy "no" \
    --save_strategy "steps" \
    --save_steps 5000 \
    --save_total_limit 1 \
    --learning_rate 2e-4 \
    --weight_decay 0. \
    --warmup_ratio 0.03 \
    --lr_scheduler_type "cosine" \
    --logging_steps 1 \
    --tf32 True \
    --model_max_length 3072 \
    --gradient_checkpointing True \
    --dataloader_num_workers 4 \
    --lazy_preprocess True \
    --report_to wandb

Teacher Model

deepspeed --master_port 60001 llava/train/train_mem.py \
    --lora_enable True --lora_r 64 --lora_alpha 256 \
    --lora_modules q_proj,k_proj \
    --deepspeed ./scripts/zero3.json \
    --model_name_or_path  Lin-Chen/open-llava-next-llama3-8b \
    --version llama_v3_teacher \
    --data_path data/path/to/FIRE-Dataset-Teacher \
    --image_folder data/path/to/images \
    --vision_tower openai/clip-vit-large-patch14-336 \
    --mm_projector_type mlp2x_gelu \
    --mm_vision_select_layer -2 \
    --mm_use_im_start_end False \
    --mm_use_im_patch_token False \
    --image_aspect_ratio anyres \
    --mm_patch_merge_type spatial_unpad \
    --group_by_modality_length True \
    --bf16 True \
    --output_dir ./checkpoints/llava-next-llama-3-8b-teacher-lora-merged \
    --num_train_epochs 1 \
    --per_device_train_batch_size 8 \
    --per_device_eval_batch_size 4 \
    --gradient_accumulation_steps 1 \
    --evaluation_strategy "no" \
    --save_strategy "steps" \
    --save_steps 1000 \
    --save_total_limit 5 \
    --learning_rate 2e-4 \
    --weight_decay 0. \
    --warmup_ratio 0.03 \
    --lr_scheduler_type "cosine" \
    --logging_steps 1 \
    --tf32 True \
    --model_max_length 3072 \
    --gradient_checkpointing True \
    --dataloader_num_workers 4 \
    --lazy_preprocess True \
    --val_logging_steps 3000 \
    --report_to wandb

Training for student and teacher models takes 16 hours on 8xA-100-80GB for every 1 million data points.

Evaluation

Instruction Following

We follow the exactly same evaluation script LLaVA repo provided. Please refer to this Evaluation.md.

Fixed Dialogue

Coming soon

Free Dialogue

Coming soon

Acknowledgement

Thanks for their brilliant contributions to the community! Here are the codebases we built upon.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published