Skip to content
/ MOSCITO Public

MOSCITO - Molecular Dynamics Subspace Clustering with Temporal Observance

Notifications You must be signed in to change notification settings

Mhae98/MOSCITO

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MOSCITO - Molecular Dynamics Subspace Clustering with Temporal Observance

Code for master thesis

Requirements

For running the code the following libraries are required:

Usage

1. Get the desired features

Depending on the format of the trajectory file a topology file has to be provided! Available features:

  • Coordinates of all atoms
  • Coordinates of C-alpha atoms
  • Backbone torsions
  • Minimal distance between residues
  • Solvent accessible surface area (SASA)
  • Dihedral angles between the chi1 - chi5 dihedral
from feature_selection import FeatureSelector

trajectory = 'path/to/trajectory_file'
topology = 'path/to/topology_file'
feature_selector = FeatureSelector(trajectory, topology)
feature = feature_selector.get_backbone_torsions()

2. Run MOSCITO

from moscito import MOSCITO

moscito = MOSCITO()
affinity = moscito.fit_predict(feature)

3. Run spectral clustering

from sklearn.cluster import SpectralClustering

num_clusters = 10
sc = SpectralClustering(num_clusters, affinity='precomputed')
labels = sc.fit_predict(affinity)

4. Visualize clustering

from visualization.visualize_clustering import show_clustering

show_clustering(labels)

About

MOSCITO - Molecular Dynamics Subspace Clustering with Temporal Observance

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages