Skip to content

Commit

Permalink
Make colmapDataParser compatible with 360_v2 dataset format (nerfstud…
Browse files Browse the repository at this point in the history
…io-project#2860)

* added an option to colmapdataparser to round up the image size when downscaling

* add round mode and update ffmpeg command

* [fix] wrong variable order

* update format

---------

Co-authored-by: Jing <jing1ling@intel.com>
  • Loading branch information
2 people authored and Michael-Spleenlab committed Apr 26, 2024
1 parent d04d23a commit 626ffcc
Show file tree
Hide file tree
Showing 2 changed files with 53 additions and 8 deletions.
18 changes: 15 additions & 3 deletions nerfstudio/cameras/cameras.py
Original file line number Diff line number Diff line change
Expand Up @@ -984,12 +984,15 @@ def get_intrinsics_matrices(self) -> Float[Tensor, "*num_cameras 3 3"]:
return K

def rescale_output_resolution(
self, scaling_factor: Union[Shaped[Tensor, "*num_cameras"], Shaped[Tensor, "*num_cameras 1"], float, int]
self,
scaling_factor: Union[Shaped[Tensor, "*num_cameras"], Shaped[Tensor, "*num_cameras 1"], float, int],
scale_rounding_mode: str = "floor",
) -> None:
"""Rescale the output resolution of the cameras.
Args:
scaling_factor: Scaling factor to apply to the output resolution.
scale_rounding_mode: round down or round up when calculating the scaled image height and width
"""
if isinstance(scaling_factor, (float, int)):
scaling_factor = torch.tensor([scaling_factor]).to(self.device).broadcast_to((self.cx.shape))
Expand All @@ -1006,5 +1009,14 @@ def rescale_output_resolution(
self.fy = self.fy * scaling_factor
self.cx = self.cx * scaling_factor
self.cy = self.cy * scaling_factor
self.height = (self.height * scaling_factor).to(torch.int64)
self.width = (self.width * scaling_factor).to(torch.int64)
if scale_rounding_mode == "floor":
self.height = (self.height * scaling_factor).to(torch.int64)
self.width = (self.width * scaling_factor).to(torch.int64)
elif scale_rounding_mode == "round":
self.height = torch.floor(0.5 + (self.height * scaling_factor)).to(torch.int64)
self.width = torch.floor(0.5 + (self.width * scaling_factor)).to(torch.int64)
elif scale_rounding_mode == "ceil":
self.height = torch.ceil(self.height * scaling_factor).to(torch.int64)
self.width = torch.ceil(self.width * scaling_factor).to(torch.int64)
else:
raise ValueError("Scale rounding mode must be 'floor', 'round' or 'ceil'.")
43 changes: 38 additions & 5 deletions nerfstudio/data/dataparsers/colmap_dataparser.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@

from __future__ import annotations

import math
import sys
from dataclasses import dataclass, field
from functools import partial
Expand Down Expand Up @@ -56,6 +57,8 @@ class ColmapDataParserConfig(DataParserConfig):
"""How much to scale the camera origins by."""
downscale_factor: Optional[int] = None
"""How much to downscale images. If not set, images are chosen such that the max dimension is <1600px."""
downscale_rounding_mode: Literal["floor", "round", "ceil"] = "floor"
"""How to round downscale image height and Image width."""
scene_scale: float = 1.0
"""How much to scale the region of interest by."""
orientation_method: Literal["pca", "up", "vertical", "none"] = "up"
Expand Down Expand Up @@ -355,7 +358,9 @@ def _generate_dataparser_outputs(self, split: str = "train", **kwargs):
camera_type=camera_type,
)

cameras.rescale_output_resolution(scaling_factor=1.0 / downscale_factor)
cameras.rescale_output_resolution(
scaling_factor=1.0 / downscale_factor, scale_rounding_mode=self.config.downscale_rounding_mode
)

if "applied_transform" in meta:
applied_transform = torch.tensor(meta["applied_transform"], dtype=transform_matrix.dtype)
Expand Down Expand Up @@ -452,18 +457,39 @@ def _load_3D_points(self, colmap_path: Path, transform_matrix: torch.Tensor, sca
out["points3D_points2D_xy"] = torch.stack(points3D_image_xy, dim=0)
return out

def _downscale_images(self, paths, get_fname, downscale_factor: int, nearest_neighbor: bool = False):
def _downscale_images(
self,
paths,
get_fname,
downscale_factor: int,
downscale_rounding_mode: str = "floor",
nearest_neighbor: bool = False,
):
def calculate_scaled_size(original_width, original_height, downscale_factor, mode="floor"):
if mode == "floor":
return math.floor(original_width / downscale_factor), math.floor(original_height / downscale_factor)
elif mode == "round":
return round(original_width / downscale_factor), round(original_height / downscale_factor)
elif mode == "ceil":
return math.ceil(original_width / downscale_factor), math.ceil(original_height / downscale_factor)
else:
raise ValueError("Invalid mode. Choose from 'floor', 'round', or 'ceil'.")

with status(msg="[bold yellow]Downscaling images...", spinner="growVertical"):
assert downscale_factor > 1
assert isinstance(downscale_factor, int)
filepath = next(iter(paths))
img = Image.open(filepath)
w, h = img.size
w_scaled, h_scaled = calculate_scaled_size(w, h, downscale_factor, downscale_rounding_mode)
# Using %05d ffmpeg commands appears to be unreliable (skips images).
for path in paths:
nn_flag = "" if not nearest_neighbor else ":flags=neighbor"
path_out = get_fname(path)
path_out.parent.mkdir(parents=True, exist_ok=True)
ffmpeg_cmd = [
f'ffmpeg -y -noautorotate -i "{path}" ',
f"-q:v 2 -vf scale=iw/{downscale_factor}:ih/{downscale_factor}{nn_flag} ",
f"-q:v 2 -vf scale={w_scaled}:{h_scaled}{nn_flag} ",
f'"{path_out}"',
]
ffmpeg_cmd = " ".join(ffmpeg_cmd)
Expand All @@ -488,7 +514,7 @@ def get_fname(parent: Path, filepath: Path) -> Path:
if self._downscale_factor is None:
if self.config.downscale_factor is None:
test_img = Image.open(filepath)
h, w = test_img.size
w, h = test_img.size
max_res = max(h, w)
df = 0
while True:
Expand All @@ -508,12 +534,17 @@ def get_fname(parent: Path, filepath: Path) -> Path:
CONSOLE.print(
f"[bold red]Downscaled images do not exist for factor of {self._downscale_factor}.[/bold red]"
)
if Confirm.ask("\nWould you like to downscale the images now?", default=False, console=CONSOLE):
if Confirm.ask(
f"\nWould you like to downscale the images using '{self.config.downscale_rounding_mode}' rounding mode now?",
default=False,
console=CONSOLE,
):
# Install the method
self._downscale_images(
image_filenames,
partial(get_fname, self.config.data / self.config.images_path),
self._downscale_factor,
self.config.downscale_rounding_mode,
nearest_neighbor=False,
)
if len(mask_filenames) > 0:
Expand All @@ -522,6 +553,7 @@ def get_fname(parent: Path, filepath: Path) -> Path:
mask_filenames,
partial(get_fname, self.config.data / self.config.masks_path),
self._downscale_factor,
self.config.downscale_rounding_mode,
nearest_neighbor=True,
)
if len(depth_filenames) > 0:
Expand All @@ -530,6 +562,7 @@ def get_fname(parent: Path, filepath: Path) -> Path:
depth_filenames,
partial(get_fname, self.config.data / self.config.depths_path),
self._downscale_factor,
self.config.downscale_rounding_mode,
nearest_neighbor=True,
)
else:
Expand Down

0 comments on commit 626ffcc

Please sign in to comment.