Paper is available at Briefing in Bioinformatics
Quick install: pip install -r requirements.txt
Dependencies:
- python 3.8+
- pytorch >=1.2
- numpy
- sklearn
- tqdm
- prefetch_generator
python main.py <dataset> [-m,--model] [-s,--seed] [-f,--fold]
Parameters:
dataset
:DrugBank
,Davis
,KIBA
,Enzyme
,GPCRs
orion_channel
-m
or--model
: select<model name>
fromMCANet
,MCANet-B
,onlyMCA
oronlyPolyLoss
, optional, default:MCANet
-s
or--seed
: set random seed, optional-f
or--fold
: set K-Fold number, optional
- DataSets: Data used in paper.
- assets: Readme resources.
- utils: A series of tools.
- config.py: model config.
- LossFunction.py: Loss function used in paper.
- main.py: main file of project.
- model.py: Proposed model in paper.
- README.md: this file
- requirements.txt: dependencies file
- RunModel.py: Train, validation and test programs.
@article{10.1093/bib/bbad082,
author = {Bian, Jilong and Zhang, Xi and Zhang, Xiying and Xu, Dali and Wang, Guohua},
title = {MCANet: shared-weight-based MultiheadCrossAttention network for drug–target interaction prediction},
journal = {Briefings in Bioinformatics},
volume = {24},
number = {2},
pages = {bbad082},
year = {2023},
month = {03},
issn = {1477-4054},
doi = {10.1093/bib/bbad082}
}