- Histogram
- (1) Scattering Rate (n/mm^2/proton) vs Radius
- All Charged Tracks
- Tracks that Point to Foil
- (2-1) Scattering Rate in the first PMT (1 coincidence) vs Radius - Cherenkov threshold passed
- (2-2) Photoelectron Yield in the first PMT (1 coincidence) vs Radius - Cherenkov threshold passed (p.e.yield 187)
- (3) 3-fold Coincidence Rate vs Radius - Cherenkov threshold passed
- (1) Scattering Rate (n/mm^2/proton) vs Radius
- Graph - pass "Tracks that Point to Foil"
- (1) Particle Mean Energy vs Radius
- Dominant particles: Proton, Pion, Electron (p.e.yield 187 for 3.8 GeV Proton Gun)
- "Rare" particles: Kaon, Muon
- (2) Nparticles vs Radius
- (1) Particle Mean Energy vs Radius
vi g4bl/ICsimulation.g4bl
-
Beam: gaussian, nEvents=1e07, particle = proton (M = 938.272 MeV, KE = 8000.0 MeV)
6.2 beam --- This command places itself into the geometry
-
Beam pipe: innerRadius = 38.1mm, radius=39.6mm
6.92 tube / 6.93 tubs --- via place
-
Ion Chamber (IC):
material ArgCO2 Ar,0.80 CARBON_DIOXIDE,0.20 density=1.66*0.001
Ti Window -> box: 70mm * 70mm * 0.0015"
Foil (Al) -> box: 70mm * 70mm * 0.004"
Gas (spacers) -> box: 70mm * 70mm * (Nspacers*0.0625")box VacPlateF height=70.0 width=70.0 length=$LEN_VacPlate color=0,1,1 material=Ti box ArCO2a height=70.0 width=70.0 length=1*0.0625*25.4-$LEN_VacPlate color=invisible material=ArgCO2 box GndPlateF height=70.0 width=70.0 length=$LEN_GndPlate color=0,0,1 material=Al
-
Virtual Detector:
- innerRadius = 40mm (outer radius of beam pipe = 39.6mm), radius = 500mm
- distance from IC: 1 m
6.96 virtualdetector Construct a VirtualDetector that generates an NTuple --- via place
- Root-output mode: "Run" without "Visualization"
(event rate: 13450 evt/s)
Output -- "g4bl/g4beamline.root"
- Visualization mode
Part 2 (ROOT macro - "root/"): Loop to find two distributions of detected/traced scattering particles
root -l root/VDtoIC.C
- Charged particles (PDGid): electron (11), muon (13), pion (211), kaon (321), proton (2212)
-
Histogram
-
(1) Distributions of scattering particle rates vs Radius
- All detected charged particles: "scatter"
- Using
$x$ ,$y$ for radius range division (binning) |$z$ fixed at VD
$$r = \sqrt{x^{2} + y^{2}}$$
- Using
- Only charged particles traced back to IC: "scatterT"
- Using
$p_x$ ,$p_y$ ,$p_z$ to trace back a detected particle - Location at the plane of IC:
$$x_1 = x - p_x\times\frac{1000}{p_z} $$ $$y_1 = y - p_y\times\frac{1000}{p_z} $$ - Check if inside IC: (IC/foil geometry: 70mm(H) * 70mm(W) * (0.004 * 0.0625 * 25.4mm)(L))
$$|x_1| < 35 \quad\text{and}\quad |y_1| < 35$$ - Check if inside beam pipe: (innerRadius = 38.1mm)
$$r_1 = \sqrt{x_{1}^{2} + y_{1}^{2}} < 38.1$$
- Using
- All detected charged particles: "scatter"
-
(2-1) Scattering Rate in the first PMT (1 coincidence) vs Radius
- Tracks that Point to Foil
- Pass Cherenkov threshold
$$p > \frac{M}{\sqrt{n^2 - 1}}$$ (refractive index of Quartz: n = 1.47) - Integrate over cube area of the crystal: Area = 25mm*25mm
- Multiply by the number of proton incidents on the IC:
$10^{10}$ in a pulse or$10^{5}$ out of time ($10^{-5}$ extinction)$$Rate_\text{1PMT} = \text{Ratio} \times \text{Area} \times N_\text{OOT}$$
-
(2-2) Photoelectron Yield in the first PMT (1 coincidence) vs Radius
- Tracks that Point to Foil
- Pass Cherenkov threshold
- Integrate over cube area of the crystal: Area = 25mm*25mm
- Multiply by the number of proton incidents on the IC:
$10^{10}$ in a pulse or$10^{5}$ out of time ($10^{-5}$ extinction) - Multiply by p.e.yield 187 (for 3.8 GeV Proton Gun)
$$Yield_\text{1PMT} = \text{Ratio} \times \text{Area} \times N_\text{OOT} \times 187$$
-
(3) 3-fold Coincidence Rate vs Radius
- Tracks that Point to Foil
- Pass Cherenkov threshold
- Using "Effective Area" AreaEff =
$\frac{1}{4}\times$ Area- Assumption: point-like scattering from the center of the IC
- The first PMT 1m downstream; The third PMT 2m downstream
- Multiply by the number of proton incidents on the IC:
$10^{10}$ in a pulse or$10^{5}$ out of time ($10^{-5}$ extinction)$$Rate_\text{3PMT} = \text{Ratio} \times \text{AreaEff} \times N_\text{OOT}$$
-
-
Graph
-
(1) Distribution of mean energies
- Using
$p_x$ ,$p_y$ ,$p_z$ and$M$ to calculate the particle energy (M_proton = 938.272 MeV, M_kaon = 493.677 MeV, M_pion = 139.6 MeV, M_muon = 105.7 MeV, M_electron = 0.511 MeV)$$E = \sqrt{{p_x}^{2} + {p_y}^{2} + {p_z}^{2} + M^{2}}$$ - The mean particle energy
$\bar{E_i}$ at a given radius$r_i$ $$\bar{E_i} = \frac{1}{\text{num of}j}\sum_{[r_i-5, r_i+5]} E_{j}$$
- Using
-
(2) Distribution of particle numbers
-
root --web=off -l root/rootfiles/ScatterDistribution.root
root -l root/drawHist.C
-
Scattering Rate vs Radius - "root/figures/Nscatter_compare_1e07.png"
-
OOT Conincidence Rate in PMT vs Radius - "Nscatter_compare_Cherenkov1e07.png"
root -l root/drawGraph.C
- Mean Energy vs Radius - "root/figures/MeanEnergy_vs_R_1e07_all.png"