@@ -141,14 +141,21 @@ subroutine int_density_dz_generic_pcm(T, S, z_t, z_b, rho_ref, rho_0, G_e, HI, &
141
141
real , optional , intent (in ) :: Z_0p ! < The height at which the pressure is 0 [Z ~> m]
142
142
143
143
! Local variables
144
- real :: T5(5 ), S5(5 ) ! Temperatures and salinities at five quadrature points [C ~> degC] and [S ~> ppt]
145
- real :: p5(5 ) ! Pressures at five quadrature points [R L2 T-2 ~> Pa]
146
- real :: r5(5 ) ! Densities at five quadrature points [R ~> kg m-3]
144
+ real :: T5((5 * HI% iscB+1 ):(5 * (HI% iecB+2 ))) ! Temperatures along a line of subgrid locations [C ~> degC]
145
+ real :: S5((5 * HI% iscB+1 ):(5 * (HI% iecB+2 ))) ! Salinities along a line of subgrid locations [S ~> ppt]
146
+ real :: p5((5 * HI% iscB+1 ):(5 * (HI% iecB+2 ))) ! Pressures along a line of subgrid locations [R L2 T-2 ~> Pa]
147
+ real :: r5((5 * HI% iscB+1 ):(5 * (HI% iecB+2 ))) ! Densities anomalies along a line of subgrid locations [R ~> kg m-3]
148
+ real :: T15((15 * HI% iscB+1 ):(15 * (HI% iecB+1 ))) ! Temperatures at an array of subgrid locations [C ~> degC]
149
+ real :: S15((15 * HI% iscB+1 ):(15 * (HI% iecB+1 ))) ! Salinities at an array of subgrid locations [S ~> ppt]
150
+ real :: p15((15 * HI% iscB+1 ):(15 * (HI% iecB+1 ))) ! Pressures at an array of subgrid locations [R L2 T-2 ~> Pa]
151
+ real :: r15((15 * HI% iscB+1 ):(15 * (HI% iecB+1 ))) ! Densities at an array of subgrid locations [R ~> kg m-3]
147
152
real :: rho_anom ! The depth averaged density anomaly [R ~> kg m-3]
148
153
real , parameter :: C1_90 = 1.0 / 90.0 ! A rational constant [nondim]
149
154
real :: GxRho ! The product of the gravitational acceleration and reference density [R L2 Z-1 T-2 ~> Pa m-1]
150
155
real :: I_Rho ! The inverse of the Boussinesq density [R-1 ~> m3 kg-1]
151
156
real :: dz ! The layer thickness [Z ~> m]
157
+ real :: dz_x(5 ,HI% iscB:HI% iecB) ! Layer thicknesses along an x-line of subgrid locations [Z ~> m]
158
+ real :: dz_y(5 ,HI% isc:HI% iec) ! Layer thicknesses along a y-line of subgrid locations [Z ~> m]
152
159
real :: z0pres ! The height at which the pressure is zero [Z ~> m]
153
160
real :: hWght ! A pressure-thickness below topography [Z ~> m]
154
161
real :: hL, hR ! Pressure-thicknesses of the columns to the left and right [Z ~> m]
@@ -162,7 +169,10 @@ subroutine int_density_dz_generic_pcm(T, S, z_t, z_b, rho_ref, rho_0, G_e, HI, &
162
169
logical :: do_massWeight ! Indicates whether to do mass weighting.
163
170
logical :: use_rho_ref ! Pass rho_ref to the equation of state for more accurate calculation
164
171
! of density anomalies.
165
- integer :: is, ie, js, je, Isq, Ieq, Jsq, Jeq, i, j, m, n
172
+ integer , dimension (2 ) :: EOSdom_h5 ! The 5-point h-point i-computational domain for the equation of state
173
+ integer , dimension (2 ) :: EOSdom_q15 ! The 3x5-point q-point i-computational domain for the equation of state
174
+ integer , dimension (2 ) :: EOSdom_h15 ! The 3x5-point h-point i-computational domain for the equation of state
175
+ integer :: is, ie, js, je, Isq, Ieq, Jsq, Jeq, i, j, m, n, pos
166
176
167
177
! These array bounds work for the indexing convention of the input arrays, but
168
178
! on the computational domain defined for the output arrays.
@@ -188,123 +198,169 @@ subroutine int_density_dz_generic_pcm(T, S, z_t, z_b, rho_ref, rho_0, G_e, HI, &
188
198
" dz_neglect must be present if useMassWghtInterp is present and true." )
189
199
endif ; endif
190
200
191
- do j= Jsq,Jeq+1 ; do i= Isq,Ieq+1
192
- dz = z_t(i,j) - z_b(i,j)
193
- do n= 1 ,5
194
- T5(n) = T(i,j) ; S5(n) = S(i,j)
195
- p5(n) = - GxRho* ((z_t(i,j) - z0pres) - 0.25 * real (n-1 )* dz)
201
+ ! Set the loop ranges for equation of state calculations at various points.
202
+ EOSdom_h5(1 ) = 1 ; EOSdom_h5(2 ) = 5 * (Ieq- Isq+2 )
203
+ EOSdom_q15(1 ) = 1 ; EOSdom_q15(2 ) = 15 * (Ieq- Isq+1 )
204
+ EOSdom_h15(1 ) = 1 ; EOSdom_h15(2 ) = 15 * (HI% iec- HI% isc+1 )
205
+
206
+ do j= Jsq,Jeq+1
207
+ do i= Isq,Ieq+1
208
+ dz = z_t(i,j) - z_b(i,j)
209
+ do n= 1 ,5
210
+ T5(i* 5 + n) = T(i,j) ; S5(i* 5 + n) = S(i,j)
211
+ p5(i* 5 + n) = - GxRho* ((z_t(i,j) - z0pres) - 0.25 * real (n-1 )* dz)
212
+ enddo
196
213
enddo
214
+
197
215
if (use_rho_ref) then
198
- call calculate_density(T5, S5, p5, r5, EOS, rho_ref= rho_ref)
199
- ! Use Boole's rule to estimate the pressure anomaly change.
200
- rho_anom = C1_90* (7.0 * (r5(1 )+ r5(5 )) + 32.0 * (r5(2 )+ r5(4 )) + 12.0 * r5(3 ))
216
+ call calculate_density(T5, S5, p5, r5, EOS, EOSdom_h5, rho_ref= rho_ref)
201
217
else
202
- call calculate_density(T5, S5, p5, r5, EOS)
203
- ! Use Boole's rule to estimate the pressure anomaly change.
204
- rho_anom = C1_90* (7.0 * (r5(1 )+ r5(5 )) + 32.0 * (r5(2 )+ r5(4 )) + 12.0 * r5(3 )) - rho_ref
218
+ call calculate_density(T5, S5, p5, r5, EOS, EOSdom_h5)
205
219
endif
206
220
207
- dpa(i,j) = G_e* dz* rho_anom
208
- ! Use a Boole's-rule-like fifth-order accurate estimate of the double integral of
209
- ! the pressure anomaly.
210
- if (present (intz_dpa)) intz_dpa(i,j) = 0.5 * G_e* dz** 2 * &
211
- (rho_anom - C1_90* (16.0 * (r5(4 )- r5(2 )) + 7.0 * (r5(5 )- r5(1 ))) )
212
- enddo ; enddo
221
+ do i= Isq,Ieq+1
222
+ ! Use Boole's rule to estimate the pressure anomaly change.
223
+ rho_anom = C1_90* (7.0 * (r5(i* 5+1 )+ r5(i* 5+5 )) + 32.0 * (r5(i* 5+2 )+ r5(i* 5+4 )) + 12.0 * r5(i* 5+3 ))
224
+ if (.not. use_rho_ref) rho_anom = rho_anom - rho_ref
225
+ dz = z_t(i,j) - z_b(i,j)
226
+ dpa(i,j) = G_e* dz* rho_anom
227
+ ! Use a Boole's-rule-like fifth-order accurate estimate of the double integral of
228
+ ! the pressure anomaly.
229
+ if (present (intz_dpa)) intz_dpa(i,j) = 0.5 * G_e* dz** 2 * &
230
+ (rho_anom - C1_90* (16.0 * (r5(i* 5+4 )- r5(i* 5+2 )) + 7.0 * (r5(i* 5+5 )- r5(i* 5+1 ))) )
231
+ enddo
232
+ enddo
213
233
214
- if (present (intx_dpa)) then ; do j= js,je ; do I= Isq,Ieq
215
- ! hWght is the distance measure by which the cell is violation of
216
- ! hydrostatic consistency. For large hWght we bias the interpolation of
217
- ! T & S along the top and bottom integrals, akin to thickness weighting.
218
- hWght = 0.0
219
- if (do_massWeight) &
220
- hWght = max (0 ., - bathyT(i,j)- z_t(i+1 ,j), - bathyT(i+1 ,j)- z_t(i,j))
221
- if (hWght > 0 .) then
222
- hL = (z_t(i,j) - z_b(i,j)) + dz_neglect
223
- hR = (z_t(i+1 ,j) - z_b(i+1 ,j)) + dz_neglect
224
- hWght = hWght * ( (hL- hR)/ (hL+ hR) )** 2
225
- iDenom = 1.0 / ( hWght* (hR + hL) + hL* hR )
226
- hWt_LL = (hWght* hL + hR* hL) * iDenom ; hWt_LR = (hWght* hR) * iDenom
227
- hWt_RR = (hWght* hR + hR* hL) * iDenom ; hWt_RL = (hWght* hL) * iDenom
234
+ if (present (intx_dpa)) then ; do j= js,je
235
+ do I= Isq,Ieq
236
+ ! hWght is the distance measure by which the cell is violation of
237
+ ! hydrostatic consistency. For large hWght we bias the interpolation of
238
+ ! T & S along the top and bottom integrals, akin to thickness weighting.
239
+ hWght = 0.0
240
+ if (do_massWeight) &
241
+ hWght = max (0 ., - bathyT(i,j)- z_t(i+1 ,j), - bathyT(i+1 ,j)- z_t(i,j))
242
+ if (hWght > 0 .) then
243
+ hL = (z_t(i,j) - z_b(i,j)) + dz_neglect
244
+ hR = (z_t(i+1 ,j) - z_b(i+1 ,j)) + dz_neglect
245
+ hWght = hWght * ( (hL- hR)/ (hL+ hR) )** 2
246
+ iDenom = 1.0 / ( hWght* (hR + hL) + hL* hR )
247
+ hWt_LL = (hWght* hL + hR* hL) * iDenom ; hWt_LR = (hWght* hR) * iDenom
248
+ hWt_RR = (hWght* hR + hR* hL) * iDenom ; hWt_RL = (hWght* hL) * iDenom
249
+ else
250
+ hWt_LL = 1.0 ; hWt_LR = 0.0 ; hWt_RR = 1.0 ; hWt_RL = 0.0
251
+ endif
252
+
253
+ do m= 2 ,4
254
+ ! T, S, and z are interpolated in the horizontal. The z interpolation
255
+ ! is linear, but for T and S it may be thickness weighted.
256
+ wt_L = 0.25 * real (5 - m) ; wt_R = 1.0 - wt_L
257
+ wtT_L = wt_L* hWt_LL + wt_R* hWt_RL ; wtT_R = wt_L* hWt_LR + wt_R* hWt_RR
258
+ dz_x(m,i) = wt_L* (z_t(i,j) - z_b(i,j)) + wt_R* (z_t(i+1 ,j) - z_b(i+1 ,j))
259
+ pos = i* 15 + (m-2 )* 5
260
+ T15(pos+1 ) = wtT_L* T(i,j) + wtT_R* T(i+1 ,j)
261
+ S15(pos+1 ) = wtT_L* S(i,j) + wtT_R* S(i+1 ,j)
262
+ p15(pos+1 ) = - GxRho* ((wt_L* z_t(i,j) + wt_R* z_t(i+1 ,j)) - z0pres)
263
+ do n= 2 ,5
264
+ T15(pos+ n) = T15(pos+1 ) ; S15(pos+ n) = S15(pos+1 )
265
+ p15(pos+ n) = p15(pos+ n-1 ) + GxRho* 0.25 * dz_x(m,i)
266
+ enddo
267
+ enddo
268
+ enddo
269
+
270
+ if (use_rho_ref) then
271
+ call calculate_density(T15, S15, p15, r15, EOS, EOSdom_q15, rho_ref= rho_ref)
228
272
else
229
- hWt_LL = 1.0 ; hWt_LR = 0.0 ; hWt_RR = 1.0 ; hWt_RL = 0.0
273
+ call calculate_density(T15, S15, p15, r15, EOS, EOSdom_q15)
230
274
endif
231
275
232
- intz(1 ) = dpa(i,j) ; intz(5 ) = dpa(i+1 ,j)
233
- do m= 2 ,4
234
- ! T, S, and z are interpolated in the horizontal. The z interpolation
235
- ! is linear, but for T and S it may be thickness weighted.
236
- wt_L = 0.25 * real (5 - m) ; wt_R = 1.0 - wt_L
237
- wtT_L = wt_L* hWt_LL + wt_R* hWt_RL ; wtT_R = wt_L* hWt_LR + wt_R* hWt_RR
238
- dz = wt_L* (z_t(i,j) - z_b(i,j)) + wt_R* (z_t(i+1 ,j) - z_b(i+1 ,j))
239
- T5(1 ) = wtT_L* T(i,j) + wtT_R* T(i+1 ,j)
240
- S5(1 ) = wtT_L* S(i,j) + wtT_R* S(i+1 ,j)
241
- p5(1 ) = - GxRho* ((wt_L* z_t(i,j) + wt_R* z_t(i+1 ,j)) - z0pres)
242
- do n= 2 ,5
243
- T5(n) = T5(1 ) ; S5(n) = S5(1 ) ; p5(n) = p5(n-1 ) + GxRho* 0.25 * dz
244
- enddo
276
+ do I= Isq,Ieq
277
+ intz(1 ) = dpa(i,j) ; intz(5 ) = dpa(i+1 ,j)
278
+ ! Use Boole's rule to estimate the pressure anomaly change.
245
279
if (use_rho_ref) then
246
- call calculate_density(T5, S5, p5, r5, EOS, rho_ref= rho_ref)
247
- ! Use Boole's rule to estimate the pressure anomaly change.
248
- intz(m) = G_e* dz* ( C1_90* (7.0 * (r5(1 )+ r5(5 )) + 32.0 * (r5(2 )+ r5(4 )) + 12.0 * r5(3 )))
280
+ do m= 2 ,4
281
+ pos = i* 15 + (m-2 )* 5
282
+ intz(m) = G_e* dz_x(m,i)* ( C1_90* ( 7.0 * (r15(pos+1 )+ r15(pos+5 )) + &
283
+ 32.0 * (r15(pos+2 )+ r15(pos+4 )) + &
284
+ 12.0 * r15(pos+3 )))
285
+ enddo
249
286
else
250
- call calculate_density(T5, S5, p5, r5, EOS)
251
- ! Use Boole's rule to estimate the pressure anomaly change.
252
- intz(m) = G_e* dz* ( C1_90* (7.0 * (r5(1 )+ r5(5 )) + 32.0 * (r5(2 )+ r5(4 )) + 12.0 * r5(3 )) - rho_ref )
287
+ do m= 2 ,4
288
+ pos = i* 15 + (m-2 )* 5
289
+ intz(m) = G_e* dz_x(m,i)* ( C1_90* ( 7.0 * (r15(pos+1 )+ r15(pos+5 )) + &
290
+ 32.0 * (r15(pos+2 )+ r15(pos+4 )) + &
291
+ 12.0 * r15(pos+3 )) - rho_ref )
292
+ enddo
253
293
endif
294
+ ! Use Boole's rule to integrate the bottom pressure anomaly values in x.
295
+ intx_dpa(i,j) = C1_90* (7.0 * (intz(1 )+ intz(5 )) + 32.0 * (intz(2 )+ intz(4 )) + &
296
+ 12.0 * intz(3 ))
297
+ enddo
298
+ enddo ; endif
254
299
300
+ if (present (inty_dpa)) then ; do J= Jsq,Jeq
301
+ do i= is,ie
302
+ ! hWght is the distance measure by which the cell is violation of
303
+ ! hydrostatic consistency. For large hWght we bias the interpolation of
304
+ ! T & S along the top and bottom integrals, akin to thickness weighting.
305
+ hWght = 0.0
306
+ if (do_massWeight) &
307
+ hWght = max (0 ., - bathyT(i,j)- z_t(i,j+1 ), - bathyT(i,j+1 )- z_t(i,j))
308
+ if (hWght > 0 .) then
309
+ hL = (z_t(i,j) - z_b(i,j)) + dz_neglect
310
+ hR = (z_t(i,j+1 ) - z_b(i,j+1 )) + dz_neglect
311
+ hWght = hWght * ( (hL- hR)/ (hL+ hR) )** 2
312
+ iDenom = 1.0 / ( hWght* (hR + hL) + hL* hR )
313
+ hWt_LL = (hWght* hL + hR* hL) * iDenom ; hWt_LR = (hWght* hR) * iDenom
314
+ hWt_RR = (hWght* hR + hR* hL) * iDenom ; hWt_RL = (hWght* hL) * iDenom
315
+ else
316
+ hWt_LL = 1.0 ; hWt_LR = 0.0 ; hWt_RR = 1.0 ; hWt_RL = 0.0
317
+ endif
318
+
319
+ do m= 2 ,4
320
+ ! T, S, and z are interpolated in the horizontal. The z interpolation
321
+ ! is linear, but for T and S it may be thickness weighted.
322
+ wt_L = 0.25 * real (5 - m) ; wt_R = 1.0 - wt_L
323
+ wtT_L = wt_L* hWt_LL + wt_R* hWt_RL ; wtT_R = wt_L* hWt_LR + wt_R* hWt_RR
324
+ dz_y(m,i) = wt_L* (z_t(i,j) - z_b(i,j)) + wt_R* (z_t(i,j+1 ) - z_b(i,j+1 ))
325
+ pos = i* 15 + (m-2 )* 5
326
+ T15(pos+1 ) = wtT_L* T(i,j) + wtT_R* T(i,j+1 )
327
+ S15(pos+1 ) = wtT_L* S(i,j) + wtT_R* S(i,j+1 )
328
+ p15(pos+1 ) = - GxRho* ((wt_L* z_t(i,j) + wt_R* z_t(i,j+1 )) - z0pres)
329
+ do n= 2 ,5
330
+ T15(pos+ n) = T15(pos+1 ) ; S15(pos+ n) = S15(pos+1 )
331
+ p15(pos+ n) = p15(pos+ n-1 ) + GxRho* 0.25 * dz_y(m,i)
332
+ enddo
333
+ enddo
255
334
enddo
256
- ! Use Boole's rule to integrate the bottom pressure anomaly values in x.
257
- intx_dpa(i,j) = C1_90* (7.0 * (intz(1 )+ intz(5 )) + 32.0 * (intz(2 )+ intz(4 )) + &
258
- 12.0 * intz(3 ))
259
- enddo ; enddo ; endif
260
335
261
- if (present (inty_dpa)) then ; do J= Jsq,Jeq ; do i= is,ie
262
- ! hWght is the distance measure by which the cell is violation of
263
- ! hydrostatic consistency. For large hWght we bias the interpolation of
264
- ! T & S along the top and bottom integrals, akin to thickness weighting.
265
- hWght = 0.0
266
- if (do_massWeight) &
267
- hWght = max (0 ., - bathyT(i,j)- z_t(i,j+1 ), - bathyT(i,j+1 )- z_t(i,j))
268
- if (hWght > 0 .) then
269
- hL = (z_t(i,j) - z_b(i,j)) + dz_neglect
270
- hR = (z_t(i,j+1 ) - z_b(i,j+1 )) + dz_neglect
271
- hWght = hWght * ( (hL- hR)/ (hL+ hR) )** 2
272
- iDenom = 1.0 / ( hWght* (hR + hL) + hL* hR )
273
- hWt_LL = (hWght* hL + hR* hL) * iDenom ; hWt_LR = (hWght* hR) * iDenom
274
- hWt_RR = (hWght* hR + hR* hL) * iDenom ; hWt_RL = (hWght* hL) * iDenom
336
+ if (use_rho_ref) then
337
+ call calculate_density(T15(15 * HI% isc+1 :), S15(15 * HI% isc+1 :), p15(15 * HI% isc+1 :), &
338
+ r15(15 * HI% isc+1 :), EOS, EOSdom_h15, rho_ref= rho_ref)
275
339
else
276
- hWt_LL = 1.0 ; hWt_LR = 0.0 ; hWt_RR = 1.0 ; hWt_RL = 0.0
340
+ call calculate_density(T15(15 * HI% isc+1 :), S15(15 * HI% isc+1 :), p15(15 * HI% isc+1 :), &
341
+ r15(15 * HI% isc+1 :), EOS, EOSdom_h15)
277
342
endif
278
343
279
- intz(1 ) = dpa(i,j) ; intz(5 ) = dpa(i,j+1 )
280
- do m= 2 ,4
281
- ! T, S, and z are interpolated in the horizontal. The z interpolation
282
- ! is linear, but for T and S it may be thickness weighted.
283
- wt_L = 0.25 * real (5 - m) ; wt_R = 1.0 - wt_L
284
- wtT_L = wt_L* hWt_LL + wt_R* hWt_RL ; wtT_R = wt_L* hWt_LR + wt_R* hWt_RR
285
- dz = wt_L* (z_t(i,j) - z_b(i,j)) + wt_R* (z_t(i,j+1 ) - z_b(i,j+1 ))
286
- T5(1 ) = wtT_L* T(i,j) + wtT_R* T(i,j+1 )
287
- S5(1 ) = wtT_L* S(i,j) + wtT_R* S(i,j+1 )
288
- p5(1 ) = - GxRho* ((wt_L* z_t(i,j) + wt_R* z_t(i,j+1 )) - z0pres)
289
- do n= 2 ,5
290
- T5(n) = T5(1 ) ; S5(n) = S5(1 )
291
- p5(n) = p5(n-1 ) + GxRho* 0.25 * dz
344
+ do i= is,ie
345
+ intz(1 ) = dpa(i,j) ; intz(5 ) = dpa(i,j+1 )
346
+ ! Use Boole's rule to estimate the pressure anomaly change.
347
+ do m= 2 ,4
348
+ pos = i* 15 + (m-2 )* 5
349
+ if (use_rho_ref) then
350
+ intz(m) = G_e* dz_y(m,i)* ( C1_90* (7.0 * (r15(pos+1 )+ r15(pos+5 )) + &
351
+ 32.0 * (r15(pos+2 )+ r15(pos+4 )) + &
352
+ 12.0 * r15(pos+3 )))
353
+ else
354
+ intz(m) = G_e* dz_y(m,i)* ( C1_90* (7.0 * (r15(pos+1 )+ r15(pos+5 )) + &
355
+ 32.0 * (r15(pos+2 )+ r15(pos+4 )) + &
356
+ 12.0 * r15(pos+3 )) - rho_ref )
357
+ endif
292
358
enddo
293
- if (use_rho_ref) then
294
- call calculate_density(T5, S5, p5, r5, EOS, rho_ref= rho_ref)
295
- ! Use Boole's rule to estimate the pressure anomaly change.
296
- intz(m) = G_e* dz* ( C1_90* (7.0 * (r5(1 )+ r5(5 )) + 32.0 * (r5(2 )+ r5(4 )) + 12.0 * r5(3 )))
297
- else
298
- call calculate_density(T5, S5, p5, r5, EOS)
299
- ! Use Boole's rule to estimate the pressure anomaly change.
300
- intz(m) = G_e* dz* ( C1_90* (7.0 * (r5(1 )+ r5(5 )) + 32.0 * (r5(2 )+ r5(4 )) + 12.0 * r5(3 )) - rho_ref )
301
- endif
302
-
359
+ ! Use Boole's rule to integrate the values.
360
+ inty_dpa(i,j) = C1_90* (7.0 * (intz(1 )+ intz(5 )) + 32.0 * (intz(2 )+ intz(4 )) + &
361
+ 12.0 * intz(3 ))
303
362
enddo
304
- ! Use Boole's rule to integrate the values.
305
- inty_dpa(i,j) = C1_90* (7.0 * (intz(1 )+ intz(5 )) + 32.0 * (intz(2 )+ intz(4 )) + &
306
- 12.0 * intz(3 ))
307
- enddo ; enddo ; endif
363
+ enddo ; endif
308
364
end subroutine int_density_dz_generic_pcm
309
365
310
366
@@ -414,10 +470,9 @@ subroutine int_density_dz_generic_plm(k, tv, T_t, T_b, S_t, S_b, e, rho_ref, &
414
470
logical :: use_rho_ref ! Pass rho_ref to the equation of state for more accurate calculation
415
471
! of density anomalies.
416
472
logical :: use_varT, use_varS, use_covarTS ! Logicals for SGS variances fields
417
- integer , dimension (2 ) :: EOSdom_q5 ! The 5-point q -point i-computational domain for the equation of state
473
+ integer , dimension (2 ) :: EOSdom_h5 ! The 5-point h -point i-computational domain for the equation of state
418
474
integer , dimension (2 ) :: EOSdom_q15 ! The 3x5-point q-point i-computational domain for the equation of state
419
475
integer , dimension (2 ) :: EOSdom_h15 ! The 3x5-point h-point i-computational domain for the equation of state
420
-
421
476
integer :: Isq, Ieq, Jsq, Jeq, i, j, m, n, pos
422
477
423
478
Isq = HI% IscB ; Ieq = HI% IecB ; Jsq = HI% JscB ; Jeq = HI% JecB
@@ -456,8 +511,8 @@ subroutine int_density_dz_generic_plm(k, tv, T_t, T_b, S_t, S_b, e, rho_ref, &
456
511
enddo
457
512
458
513
! Set the loop ranges for equation of state calculations at various points.
459
- EOSdom_q5 (1 ) = 1 ; EOSdom_q5 (2 ) = (ieq - isq +2 )* 5
460
- EOSdom_q15(1 ) = 1 ; EOSdom_q15(2 ) = 15 * (ieq - isq +1 )
514
+ EOSdom_h5 (1 ) = 1 ; EOSdom_h5 (2 ) = 5 * (Ieq - Isq +2 )
515
+ EOSdom_q15(1 ) = 1 ; EOSdom_q15(2 ) = 15 * (Ieq - Isq +1 )
461
516
EOSdom_h15(1 ) = 1 ; EOSdom_h15(2 ) = 15 * (HI% iec- HI% isc+1 )
462
517
463
518
! 1. Compute vertical integrals
@@ -475,12 +530,12 @@ subroutine int_density_dz_generic_plm(k, tv, T_t, T_b, S_t, S_b, e, rho_ref, &
475
530
if (use_varS) S25(i* 5+1 :i* 5+5 ) = tv% varS(i,j,k)
476
531
enddo
477
532
if (use_Stanley_eos) then
478
- call calculate_density(T5, S5, p5, T25, TS5, S25, r5, EOS, EOSdom_q5 , rho_ref= rho_ref)
533
+ call calculate_density(T5, S5, p5, T25, TS5, S25, r5, EOS, EOSdom_h5 , rho_ref= rho_ref)
479
534
else
480
535
if (use_rho_ref) then
481
- call calculate_density(T5, S5, p5, r5, EOS, EOSdom_q5 , rho_ref= rho_ref)
536
+ call calculate_density(T5, S5, p5, r5, EOS, EOSdom_h5 , rho_ref= rho_ref)
482
537
else
483
- call calculate_density(T5, S5, p5, r5, EOS, EOSdom_q5 )
538
+ call calculate_density(T5, S5, p5, r5, EOS, EOSdom_h5 )
484
539
u5(:) = r5(:) - rho_ref
485
540
endif
486
541
endif
@@ -491,8 +546,8 @@ subroutine int_density_dz_generic_plm(k, tv, T_t, T_b, S_t, S_b, e, rho_ref, &
491
546
rho_anom = C1_90* (7.0 * (r5(i* 5+1 )+ r5(i* 5+5 )) + 32.0 * (r5(i* 5+2 )+ r5(i* 5+4 )) + 12.0 * r5(i* 5+3 ))
492
547
dpa(i,j) = G_e* dz(i)* rho_anom
493
548
if (present (intz_dpa)) then
494
- ! Use a Boole's-rule-like fifth-order accurate estimate of
495
- ! the double integral of the pressure anomaly.
549
+ ! Use a Boole's-rule-like fifth-order accurate estimate of
550
+ ! the double integral of the pressure anomaly.
496
551
intz_dpa(i,j) = 0.5 * G_e* dz(i)** 2 * &
497
552
(rho_anom - C1_90* (16.0 * (r5(i* 5+4 )- r5(i* 5+2 )) + 7.0 * (r5(i* 5+5 )- r5(i* 5+1 ))) )
498
553
endif
@@ -504,8 +559,8 @@ subroutine int_density_dz_generic_plm(k, tv, T_t, T_b, S_t, S_b, e, rho_ref, &
504
559
- rho_ref
505
560
dpa(i,j) = G_e* dz(i)* rho_anom
506
561
if (present (intz_dpa)) then
507
- ! Use a Boole's-rule-like fifth-order accurate estimate of
508
- ! the double integral of the pressure anomaly.
562
+ ! Use a Boole's-rule-like fifth-order accurate estimate of
563
+ ! the double integral of the pressure anomaly.
509
564
intz_dpa(i,j) = 0.5 * G_e* dz(i)** 2 * &
510
565
(rho_anom - C1_90* (16.0 * (u5(i* 5+4 )- u5(i* 5+2 )) + 7.0 * (u5(i* 5+5 )- u5(i* 5+1 ))) )
511
566
endif
@@ -774,13 +829,26 @@ subroutine int_density_dz_generic_ppm(k, tv, T_t, T_b, S_t, S_b, e, &
774
829
! a parabolic interpolation is used to compute intermediate values.
775
830
776
831
! Local variables
777
- real :: T5(5 ) ! Temperatures along a line of subgrid locations [C ~> degC]
778
- real :: S5(5 ) ! Salinities along a line of subgrid locations [S ~> ppt]
779
- real :: T25(5 ) ! SGS temperature variance along a line of subgrid locations [C2 ~> degC2]
780
- real :: TS5(5 ) ! SGS temperature-salinity covariance along a line of subgrid locations [C S ~> degC ppt]
781
- real :: S25(5 ) ! SGS salinity variance along a line of subgrid locations [S2 ~> ppt2]
782
- real :: p5(5 ) ! Pressures at five quadrature points [R L2 T-2 ~> Pa]
783
- real :: r5(5 ) ! Density anomalies from rho_ref at quadrature points [R ~> kg m-3]
832
+ real :: T5((5 * HI% iscB+1 ):(5 * (HI% iecB+2 ))) ! Temperatures along a line of subgrid locations [C ~> degC]
833
+ real :: S5((5 * HI% iscB+1 ):(5 * (HI% iecB+2 ))) ! Salinities along a line of subgrid locations [S ~> ppt]
834
+ real :: T25((5 * HI% iscB+1 ):(5 * (HI% iecB+2 ))) ! SGS temperature variance along a line of subgrid
835
+ ! locations [C2 ~> degC2]
836
+ real :: TS5((5 * HI% iscB+1 ):(5 * (HI% iecB+2 ))) ! SGS temp-salt covariance along a line of subgrid
837
+ ! locations [C S ~> degC ppt]
838
+ real :: S25((5 * HI% iscB+1 ):(5 * (HI% iecB+2 ))) ! SGS salinity variance along a line of subgrid locations [S2 ~> ppt2]
839
+ real :: p5((5 * HI% iscB+1 ):(5 * (HI% iecB+2 ))) ! Pressures along a line of subgrid locations [R L2 T-2 ~> Pa]
840
+ real :: r5((5 * HI% iscB+1 ):(5 * (HI% iecB+2 ))) ! Densities anomalies along a line of subgrid
841
+ ! locations [R ~> kg m-3]
842
+ real :: T15((15 * HI% iscB+1 ):(15 * (HI% iecB+1 ))) ! Temperatures at an array of subgrid locations [C ~> degC]
843
+ real :: S15((15 * HI% iscB+1 ):(15 * (HI% iecB+1 ))) ! Salinities at an array of subgrid locations [S ~> ppt]
844
+ real :: T215((15 * HI% iscB+1 ):(15 * (HI% iecB+1 ))) ! SGS temperature variance along a line of subgrid
845
+ ! locations [C2 ~> degC2]
846
+ real :: TS15((15 * HI% iscB+1 ):(15 * (HI% iecB+1 ))) ! SGS temp-salt covariance along a line of subgrid
847
+ ! locations [C S ~> degC ppt]
848
+ real :: S215((15 * HI% iscB+1 ):(15 * (HI% iecB+1 ))) ! SGS salinity variance along a line of subgrid
849
+ ! locations [S2 ~> ppt2]
850
+ real :: p15((15 * HI% iscB+1 ):(15 * (HI% iecB+1 ))) ! Pressures at an array of subgrid locations [R L2 T-2 ~> Pa]
851
+ real :: r15((15 * HI% iscB+1 ):(15 * (HI% iecB+1 ))) ! Densities at an array of subgrid locations [R ~> kg m-3]
784
852
real :: wt_t(5 ), wt_b(5 ) ! Top and bottom weights [nondim]
785
853
real :: rho_anom ! The integrated density anomaly [R ~> kg m-3]
786
854
real :: w_left, w_right ! Left and right weights [nondim]
@@ -790,6 +858,8 @@ subroutine int_density_dz_generic_ppm(k, tv, T_t, T_b, S_t, S_b, e, &
790
858
real :: GxRho ! The gravitational acceleration times density [R L2 Z-1 T-2 ~> kg m-2 s-2]
791
859
real :: I_Rho ! The inverse of the Boussinesq density [R-1 ~> m3 kg-1]
792
860
real :: dz ! Layer thicknesses at tracer points [Z ~> m]
861
+ real :: dz_x(5 ,HI% iscB:HI% iecB) ! Layer thicknesses along an x-line of subgrid locations [Z ~> m]
862
+ real :: dz_y(5 ,HI% isc:HI% iec) ! Layer thicknesses along a y-line of subgrid locations [Z ~> m]
793
863
real :: massWeightToggle ! A non-dimensional toggle factor (0 or 1) [nondim]
794
864
real :: Ttl, Tbl, Tml, Ttr, Tbr, Tmr ! Temperatures at the velocity cell corners [C ~> degC]
795
865
real :: Stl, Sbl, Sml, Str, Sbr, Smr ! Salinities at the velocity cell corners [S ~> ppt]
@@ -801,9 +871,12 @@ subroutine int_density_dz_generic_ppm(k, tv, T_t, T_b, S_t, S_b, e, &
801
871
real :: hWght ! A topographically limited thickness weight [Z ~> m]
802
872
real :: hL, hR ! Thicknesses to the left and right [Z ~> m]
803
873
real :: iDenom ! The denominator of the thickness weight expressions [Z-2 ~> m-2]
804
- integer :: Isq, Ieq, Jsq, Jeq, i, j, m, n
874
+ integer , dimension (2 ) :: EOSdom_h5 ! The 5-point h-point i-computational domain for the equation of state
875
+ integer , dimension (2 ) :: EOSdom_q15 ! The 3x5-point q-point i-computational domain for the equation of state
876
+ integer , dimension (2 ) :: EOSdom_h15 ! The 3x5-point h-point i-computational domain for the equation of state
877
+ integer :: Isq, Ieq, Jsq, Jeq, i, j, m, n, pos
805
878
logical :: use_PPM ! If false, assume zero curvature in reconstruction, i.e. PLM
806
- logical :: use_varT, use_varS, use_covarTS
879
+ logical :: use_varT, use_varS, use_covarTS ! Logicals for SGS variances fields
807
880
808
881
Isq = HI% IscB ; Ieq = HI% IecB ; Jsq = HI% JscB ; Jeq = HI% JecB
809
882
@@ -824,226 +897,277 @@ subroutine int_density_dz_generic_ppm(k, tv, T_t, T_b, S_t, S_b, e, &
824
897
use_covarTS = .false.
825
898
use_varS = .false.
826
899
if (use_stanley_eos) then
827
- use_varT = associated (tv% varT)
828
- use_covarTS = associated (tv% covarTS)
829
- use_varS = associated (tv% varS)
900
+ use_varT = associated (tv% varT)
901
+ use_covarTS = associated (tv% covarTS)
902
+ use_varS = associated (tv% varS)
830
903
endif
831
904
832
905
T25(:) = 0 .
833
906
TS5(:) = 0 .
834
907
S25(:) = 0 .
908
+ T215(:) = 0 .
909
+ TS15(:) = 0 .
910
+ S215(:) = 0 .
835
911
836
912
do n = 1 , 5
837
913
wt_t(n) = 0.25 * real (5 - n)
838
914
wt_b(n) = 1.0 - wt_t(n)
839
915
enddo
840
916
917
+ ! Set the loop ranges for equation of state calculations at various points.
918
+ EOSdom_h5(1 ) = 1 ; EOSdom_h5(2 ) = 5 * (Ieq- Isq+2 )
919
+ EOSdom_q15(1 ) = 1 ; EOSdom_q15(2 ) = 15 * (Ieq- Isq+1 )
920
+ EOSdom_h15(1 ) = 1 ; EOSdom_h15(2 ) = 15 * (HI% iec- HI% isc+1 )
921
+
841
922
! 1. Compute vertical integrals
842
- do j= Jsq,Jeq+1 ; do i= Isq,Ieq+1
843
- if (use_PPM) then
844
- ! Curvature coefficient of the parabolas
845
- s6 = 3.0 * ( 2.0 * tv% S(i,j,k) - ( S_t(i,j,k) + S_b(i,j,k) ) )
846
- t6 = 3.0 * ( 2.0 * tv% T(i,j,k) - ( T_t(i,j,k) + T_b(i,j,k) ) )
847
- endif
848
- dz = e(i,j,K) - e(i,j,K+1 )
849
- do n= 1 ,5
850
- p5(n) = - GxRho* ((e(i,j,K) - z0pres) - 0.25 * real (n-1 )* dz)
851
- ! Salinity and temperature points are reconstructed with PPM
852
- S5(n) = wt_t(n) * S_t(i,j,k) + wt_b(n) * ( S_b(i,j,k) + s6 * wt_t(n) )
853
- T5(n) = wt_t(n) * T_t(i,j,k) + wt_b(n) * ( T_b(i,j,k) + t6 * wt_t(n) )
923
+ do j= Jsq,Jeq+1
924
+ do i= Isq,Ieq+1
925
+ if (use_PPM) then
926
+ ! Curvature coefficient of the parabolas
927
+ s6 = 3.0 * ( 2.0 * tv% S(i,j,k) - ( S_t(i,j,k) + S_b(i,j,k) ) )
928
+ t6 = 3.0 * ( 2.0 * tv% T(i,j,k) - ( T_t(i,j,k) + T_b(i,j,k) ) )
929
+ endif
930
+ dz = e(i,j,K) - e(i,j,K+1 )
931
+ do n= 1 ,5
932
+ p5(I* 5 + n) = - GxRho* ((e(i,j,K) - z0pres) - 0.25 * real (n-1 )* dz)
933
+ ! Salinity and temperature points are reconstructed with PPM
934
+ S5(I* 5 + n) = wt_t(n) * S_t(i,j,k) + wt_b(n) * ( S_b(i,j,k) + s6 * wt_t(n) )
935
+ T5(I* 5 + n) = wt_t(n) * T_t(i,j,k) + wt_b(n) * ( T_b(i,j,k) + t6 * wt_t(n) )
936
+ enddo
937
+ if (use_stanley_eos) then
938
+ if (use_varT) T25(I* 5+1 :I* 5+5 ) = tv% varT(i,j,k)
939
+ if (use_covarTS) TS5(I* 5+1 :I* 5+5 ) = tv% covarTS(i,j,k)
940
+ if (use_varS) S25(I* 5+1 :I* 5+5 ) = tv% varS(i,j,k)
941
+ endif
854
942
enddo
943
+
855
944
if (use_stanley_eos) then
856
- if (use_varT) T25(:) = tv% varT(i,j,k)
857
- if (use_covarTS) TS5(:) = tv% covarTS(i,j,k)
858
- if (use_varS) S25(:) = tv% varS(i,j,k)
859
- call calculate_density(T5, S5, p5, T25, TS5, S25, r5, EOS, rho_ref= rho_ref)
945
+ call calculate_density(T5, S5, p5, T25, TS5, S25, r5, EOS, EOSdom_h5, rho_ref= rho_ref)
860
946
else
861
- call calculate_density(T5, S5, p5, r5, EOS, rho_ref= rho_ref)
947
+ call calculate_density(T5, S5, p5, r5, EOS, EOSdom_h5, rho_ref= rho_ref)
862
948
endif
863
949
864
- ! Use Boole's rule to estimate the pressure anomaly change.
865
- rho_anom = C1_90* (7.0 * (r5(1 )+ r5(5 )) + 32.0 * (r5(2 )+ r5(4 )) + 12.0 * r5(3 ))
866
- dpa(i,j) = G_e* dz* rho_anom
867
- if (present (intz_dpa)) then
868
- ! Use a Boole's-rule-like fifth-order accurate estimate of
869
- ! the double integral of the pressure anomaly.
870
- intz_dpa(i,j) = 0.5 * G_e* dz** 2 * &
871
- (rho_anom - C1_90* (16.0 * (r5(4 )- r5(2 )) + 7.0 * (r5(5 )- r5(1 ))) )
872
- endif
873
- enddo ; enddo ! end loops on j and i
950
+ do i= Isq,Ieq+1
951
+ dz = e(i,j,K) - e(i,j,K+1 )
952
+ ! Use Boole's rule to estimate the pressure anomaly change.
953
+ rho_anom = C1_90* (7.0 * (r5(i* 5+1 )+ r5(i* 5+5 )) + 32.0 * (r5(i* 5+2 )+ r5(i* 5+4 )) + 12.0 * r5(i* 5+3 ))
954
+ dpa(i,j) = G_e* dz* rho_anom
955
+ if (present (intz_dpa)) then
956
+ ! Use a Boole's-rule-like fifth-order accurate estimate of
957
+ ! the double integral of the pressure anomaly.
958
+ intz_dpa(i,j) = 0.5 * G_e* dz** 2 * &
959
+ (rho_anom - C1_90* (16.0 * (r5(i* 5+4 )- r5(i* 5+2 )) + 7.0 * (r5(i* 5+5 )- r5(i* 5+1 ))) )
960
+ endif
961
+ enddo ! end loop on i
962
+ enddo ! end loop on j
874
963
875
964
! 2. Compute horizontal integrals in the x direction
876
- if (present (intx_dpa)) then ; do j= HI% jsc,HI% jec ; do I= Isq,Ieq
877
- ! Corner values of T and S
878
- ! hWght is the distance measure by which the cell is violation of
879
- ! hydrostatic consistency. For large hWght we bias the interpolation
880
- ! of T,S along the top and bottom integrals, almost like thickness
881
- ! weighting.
882
- ! Note: To work in terrain following coordinates we could offset
883
- ! this distance by the layer thickness to replicate other models.
884
- hWght = massWeightToggle * &
885
- max (0 ., - bathyT(i,j)- e(i+1 ,j,K), - bathyT(i+1 ,j)- e(i,j,K))
886
- if (hWght > 0 .) then
887
- hL = (e(i,j,K) - e(i,j,K+1 )) + dz_subroundoff
888
- hR = (e(i+1 ,j,K) - e(i+1 ,j,K+1 )) + dz_subroundoff
889
- hWght = hWght * ( (hL- hR)/ (hL+ hR) )** 2
890
- iDenom = 1 ./ ( hWght* (hR + hL) + hL* hR )
891
- Ttl = ( (hWght* hR)* T_t(i+1 ,j,k) + (hWght* hL + hR* hL)* T_t(i,j,k) ) * iDenom
892
- Tbl = ( (hWght* hR)* T_b(i+1 ,j,k) + (hWght* hL + hR* hL)* T_b(i,j,k) ) * iDenom
893
- Tml = ( (hWght* hR)* tv% T(i+1 ,j,k)+ (hWght* hL + hR* hL)* tv% T(i,j,k) ) * iDenom
894
- Ttr = ( (hWght* hL)* T_t(i,j,k) + (hWght* hR + hR* hL)* T_t(i+1 ,j,k) ) * iDenom
895
- Tbr = ( (hWght* hL)* T_b(i,j,k) + (hWght* hR + hR* hL)* T_b(i+1 ,j,k) ) * iDenom
896
- Tmr = ( (hWght* hL)* tv% T(i,j,k) + (hWght* hR + hR* hL)* tv% T(i+1 ,j,k) ) * iDenom
897
- Stl = ( (hWght* hR)* S_t(i+1 ,j,k) + (hWght* hL + hR* hL)* S_t(i,j,k) ) * iDenom
898
- Sbl = ( (hWght* hR)* S_b(i+1 ,j,k) + (hWght* hL + hR* hL)* S_b(i,j,k) ) * iDenom
899
- Sml = ( (hWght* hR)* tv% S(i+1 ,j,k) + (hWght* hL + hR* hL)* tv% S(i,j,k) ) * iDenom
900
- Str = ( (hWght* hL)* S_t(i,j,k) + (hWght* hR + hR* hL)* S_t(i+1 ,j,k) ) * iDenom
901
- Sbr = ( (hWght* hL)* S_b(i,j,k) + (hWght* hR + hR* hL)* S_b(i+1 ,j,k) ) * iDenom
902
- Smr = ( (hWght* hL)* tv% S(i,j,k) + (hWght* hR + hR* hL)* tv% S(i+1 ,j,k) ) * iDenom
903
- else
904
- Ttl = T_t(i,j,k); Tbl = T_b(i,j,k); Ttr = T_t(i+1 ,j,k); Tbr = T_b(i+1 ,j,k)
905
- Tml = tv% T(i,j,k); Tmr = tv% T(i+1 ,j,k)
906
- Stl = S_t(i,j,k); Sbl = S_b(i,j,k); Str = S_t(i+1 ,j,k); Sbr = S_b(i+1 ,j,k)
907
- Sml = tv% S(i,j,k); Smr = tv% S(i+1 ,j,k)
908
- endif
909
-
910
- do m= 2 ,4
911
- w_left = wt_t(m) ; w_right = wt_b(m)
912
-
913
- ! Salinity and temperature points are linearly interpolated in
914
- ! the horizontal. The subscript (1) refers to the top value in
915
- ! the vertical profile while subscript (5) refers to the bottom
916
- ! value in the vertical profile.
917
- T_top = w_left* Ttl + w_right* Ttr
918
- T_mn = w_left* Tml + w_right* Tmr
919
- T_bot = w_left* Tbl + w_right* Tbr
920
-
921
- S_top = w_left* Stl + w_right* Str
922
- S_mn = w_left* Sml + w_right* Smr
923
- S_bot = w_left* Sbl + w_right* Sbr
924
-
925
- ! Pressure
926
- dz = w_left* (e(i,j,K) - e(i,j,K+1 )) + w_right* (e(i+1 ,j,K) - e(i+1 ,j,K+1 ))
927
- p5(1 ) = - GxRho* ((w_left* e(i,j,K) + w_right* e(i+1 ,j,K)) - z0pres)
928
- do n= 2 ,5
929
- p5(n) = p5(n-1 ) + GxRho* 0.25 * dz
930
- enddo
931
-
932
- ! Parabolic reconstructions in the vertical for T and S
933
- if (use_PPM) then
934
- ! Coefficients of the parabolas
935
- s6 = 3.0 * ( 2.0 * S_mn - ( S_top + S_bot ) )
936
- t6 = 3.0 * ( 2.0 * T_mn - ( T_top + T_bot ) )
937
- endif
938
- do n= 1 ,5
939
- S5(n) = wt_t(n) * S_top + wt_b(n) * ( S_bot + s6 * wt_t(n) )
940
- T5(n) = wt_t(n) * T_top + wt_b(n) * ( T_bot + t6 * wt_t(n) )
941
- enddo
942
- if (use_stanley_eos) then
943
- if (use_varT) T25(:) = w_left* tv% varT(i,j,k) + w_right* tv% varT(i+1 ,j,k)
944
- if (use_covarTS) TS5(:) = w_left* tv% covarTS(i,j,k) + w_right* tv% covarTS(i+1 ,j,k)
945
- if (use_varS) S25(:) = w_left* tv% varS(i,j,k) + w_right* tv% varS(i+1 ,j,k)
946
- call calculate_density(T5, S5, p5, T25, TS5, S25, r5, EOS, rho_ref= rho_ref)
965
+ if (present (intx_dpa)) then ; do j= HI% jsc,HI% jec
966
+ do I= Isq,Ieq
967
+ ! Corner values of T and S
968
+ ! hWght is the distance measure by which the cell is violation of
969
+ ! hydrostatic consistency. For large hWght we bias the interpolation
970
+ ! of T,S along the top and bottom integrals, almost like thickness
971
+ ! weighting.
972
+ ! Note: To work in terrain following coordinates we could offset
973
+ ! this distance by the layer thickness to replicate other models.
974
+ hWght = massWeightToggle * &
975
+ max (0 ., - bathyT(i,j)- e(i+1 ,j,K), - bathyT(i+1 ,j)- e(i,j,K))
976
+ if (hWght > 0 .) then
977
+ hL = (e(i,j,K) - e(i,j,K+1 )) + dz_subroundoff
978
+ hR = (e(i+1 ,j,K) - e(i+1 ,j,K+1 )) + dz_subroundoff
979
+ hWght = hWght * ( (hL- hR)/ (hL+ hR) )** 2
980
+ iDenom = 1 ./ ( hWght* (hR + hL) + hL* hR )
981
+ Ttl = ( (hWght* hR)* T_t(i+1 ,j,k) + (hWght* hL + hR* hL)* T_t(i,j,k) ) * iDenom
982
+ Tbl = ( (hWght* hR)* T_b(i+1 ,j,k) + (hWght* hL + hR* hL)* T_b(i,j,k) ) * iDenom
983
+ Tml = ( (hWght* hR)* tv% T(i+1 ,j,k)+ (hWght* hL + hR* hL)* tv% T(i,j,k) ) * iDenom
984
+ Ttr = ( (hWght* hL)* T_t(i,j,k) + (hWght* hR + hR* hL)* T_t(i+1 ,j,k) ) * iDenom
985
+ Tbr = ( (hWght* hL)* T_b(i,j,k) + (hWght* hR + hR* hL)* T_b(i+1 ,j,k) ) * iDenom
986
+ Tmr = ( (hWght* hL)* tv% T(i,j,k) + (hWght* hR + hR* hL)* tv% T(i+1 ,j,k) ) * iDenom
987
+ Stl = ( (hWght* hR)* S_t(i+1 ,j,k) + (hWght* hL + hR* hL)* S_t(i,j,k) ) * iDenom
988
+ Sbl = ( (hWght* hR)* S_b(i+1 ,j,k) + (hWght* hL + hR* hL)* S_b(i,j,k) ) * iDenom
989
+ Sml = ( (hWght* hR)* tv% S(i+1 ,j,k) + (hWght* hL + hR* hL)* tv% S(i,j,k) ) * iDenom
990
+ Str = ( (hWght* hL)* S_t(i,j,k) + (hWght* hR + hR* hL)* S_t(i+1 ,j,k) ) * iDenom
991
+ Sbr = ( (hWght* hL)* S_b(i,j,k) + (hWght* hR + hR* hL)* S_b(i+1 ,j,k) ) * iDenom
992
+ Smr = ( (hWght* hL)* tv% S(i,j,k) + (hWght* hR + hR* hL)* tv% S(i+1 ,j,k) ) * iDenom
947
993
else
948
- call calculate_density(T5, S5, p5, r5, EOS, rho_ref= rho_ref)
994
+ Ttl = T_t(i,j,k); Tbl = T_b(i,j,k); Ttr = T_t(i+1 ,j,k); Tbr = T_b(i+1 ,j,k)
995
+ Tml = tv% T(i,j,k); Tmr = tv% T(i+1 ,j,k)
996
+ Stl = S_t(i,j,k); Sbl = S_b(i,j,k); Str = S_t(i+1 ,j,k); Sbr = S_b(i+1 ,j,k)
997
+ Sml = tv% S(i,j,k); Smr = tv% S(i+1 ,j,k)
949
998
endif
950
999
951
- ! Use Boole's rule to estimate the pressure anomaly change.
952
- intz(m) = G_e* dz* ( C1_90* (7.0 * (r5(1 )+ r5(5 )) + 32.0 * (r5(2 )+ r5(4 )) + 12.0 * r5(3 )) )
953
- enddo ! m
954
- intz(1 ) = dpa(i,j) ; intz(5 ) = dpa(i+1 ,j)
1000
+ do m= 2 ,4
1001
+ w_left = wt_t(m) ; w_right = wt_b(m)
955
1002
956
- ! Use Boole's rule to integrate the bottom pressure anomaly values in x.
957
- intx_dpa(I,j) = C1_90* (7.0 * (intz(1 )+ intz(5 )) + 32.0 * (intz(2 )+ intz(4 )) + 12.0 * intz(3 ))
1003
+ ! Salinity and temperature points are linearly interpolated in
1004
+ ! the horizontal. The subscript (1) refers to the top value in
1005
+ ! the vertical profile while subscript (5) refers to the bottom
1006
+ ! value in the vertical profile.
1007
+ T_top = w_left* Ttl + w_right* Ttr
1008
+ T_mn = w_left* Tml + w_right* Tmr
1009
+ T_bot = w_left* Tbl + w_right* Tbr
958
1010
959
- enddo ; enddo ; endif
1011
+ S_top = w_left* Stl + w_right* Str
1012
+ S_mn = w_left* Sml + w_right* Smr
1013
+ S_bot = w_left* Sbl + w_right* Sbr
960
1014
961
- ! 3. Compute horizontal integrals in the y direction
962
- if (present (inty_dpa)) then ; do J= Jsq,Jeq ; do i= HI% isc,HI% iec
963
- ! Corner values of T and S
964
- ! hWght is the distance measure by which the cell is violation of
965
- ! hydrostatic consistency. For large hWght we bias the interpolation
966
- ! of T,S along the top and bottom integrals, almost like thickness
967
- ! weighting.
968
- ! Note: To work in terrain following coordinates we could offset
969
- ! this distance by the layer thickness to replicate other models.
970
- hWght = massWeightToggle * &
971
- max (0 ., - bathyT(i,j)- e(i,j+1 ,K), - bathyT(i,j+1 )- e(i,j,K))
972
- if (hWght > 0 .) then
973
- hL = (e(i,j,K) - e(i,j,K+1 )) + dz_subroundoff
974
- hR = (e(i,j+1 ,K) - e(i,j+1 ,K+1 )) + dz_subroundoff
975
- hWght = hWght * ( (hL- hR)/ (hL+ hR) )** 2
976
- iDenom = 1 ./ ( hWght* (hR + hL) + hL* hR )
977
- Ttl = ( (hWght* hR)* T_t(i,j+1 ,k) + (hWght* hL + hR* hL)* T_t(i,j,k) ) * iDenom
978
- Tbl = ( (hWght* hR)* T_b(i,j+1 ,k) + (hWght* hL + hR* hL)* T_b(i,j,k) ) * iDenom
979
- Tml = ( (hWght* hR)* tv% T(i,j+1 ,k)+ (hWght* hL + hR* hL)* tv% T(i,j,k) ) * iDenom
980
- Ttr = ( (hWght* hL)* T_t(i,j,k) + (hWght* hR + hR* hL)* T_t(i,j+1 ,k) ) * iDenom
981
- Tbr = ( (hWght* hL)* T_b(i,j,k) + (hWght* hR + hR* hL)* T_b(i,j+1 ,k) ) * iDenom
982
- Tmr = ( (hWght* hL)* tv% T(i,j,k) + (hWght* hR + hR* hL)* tv% T(i,j+1 ,k) ) * iDenom
983
- Stl = ( (hWght* hR)* S_t(i,j+1 ,k) + (hWght* hL + hR* hL)* S_t(i,j,k) ) * iDenom
984
- Sbl = ( (hWght* hR)* S_b(i,j+1 ,k) + (hWght* hL + hR* hL)* S_b(i,j,k) ) * iDenom
985
- Sml = ( (hWght* hR)* tv% S(i,j+1 ,k)+ (hWght* hL + hR* hL)* tv% S(i,j,k) ) * iDenom
986
- Str = ( (hWght* hL)* S_t(i,j,k) + (hWght* hR + hR* hL)* S_t(i,j+1 ,k) ) * iDenom
987
- Sbr = ( (hWght* hL)* S_b(i,j,k) + (hWght* hR + hR* hL)* S_b(i,j+1 ,k) ) * iDenom
988
- Smr = ( (hWght* hL)* tv% S(i,j,k) + (hWght* hR + hR* hL)* tv% S(i,j+1 ,k) ) * iDenom
1015
+ ! Pressure
1016
+ dz_x(m,i) = w_left* (e(i,j,K) - e(i,j,K+1 )) + w_right* (e(i+1 ,j,K) - e(i+1 ,j,K+1 ))
1017
+
1018
+ pos = i* 15 + (m-2 )* 5
1019
+ p15(pos+1 ) = - GxRho* ((w_left* e(i,j,K) + w_right* e(i+1 ,j,K)) - z0pres)
1020
+ do n= 2 ,5
1021
+ p15(pos+ n) = p15(pos+ n-1 ) + GxRho* 0.25 * dz_x(m,i)
1022
+ enddo
1023
+
1024
+ ! Parabolic reconstructions in the vertical for T and S
1025
+ if (use_PPM) then
1026
+ ! Coefficients of the parabolas
1027
+ s6 = 3.0 * ( 2.0 * S_mn - ( S_top + S_bot ) )
1028
+ t6 = 3.0 * ( 2.0 * T_mn - ( T_top + T_bot ) )
1029
+ endif
1030
+ do n= 1 ,5
1031
+ S15(pos+ n) = wt_t(n) * S_top + wt_b(n) * ( S_bot + s6 * wt_t(n) )
1032
+ T15(pos+ n) = wt_t(n) * T_top + wt_b(n) * ( T_bot + t6 * wt_t(n) )
1033
+ enddo
1034
+ if (use_stanley_eos) then
1035
+ if (use_varT) T215(pos+1 :pos+5 ) = w_left* tv% varT(i,j,k) + w_right* tv% varT(i+1 ,j,k)
1036
+ if (use_covarTS) TS15(pos+1 :pos+5 ) = w_left* tv% covarTS(i,j,k) + w_right* tv% covarTS(i+1 ,j,k)
1037
+ if (use_varS) S215(pos+1 :pos+5 ) = w_left* tv% varS(i,j,k) + w_right* tv% varS(i+1 ,j,k)
1038
+ endif
1039
+ if (use_stanley_eos) then
1040
+ call calculate_density(T5, S5, p5, T25, TS5, S25, r5, EOS, rho_ref= rho_ref)
1041
+ else
1042
+ call calculate_density(T5, S5, p5, r5, EOS, rho_ref= rho_ref)
1043
+ endif
1044
+ enddo
1045
+ enddo
1046
+
1047
+ if (use_stanley_eos) then
1048
+ call calculate_density(T15, S15, p15, T215, TS15, S215, r15, EOS, EOSdom_q15, rho_ref= rho_ref)
989
1049
else
990
- Ttl = T_t(i,j,k); Tbl = T_b(i,j,k); Ttr = T_t(i,j+1 ,k); Tbr = T_b(i,j+1 ,k)
991
- Tml = tv% T(i,j,k); Tmr = tv% T(i,j+1 ,k)
992
- Stl = S_t(i,j,k); Sbl = S_b(i,j,k); Str = S_t(i,j+1 ,k); Sbr = S_b(i,j+1 ,k)
993
- Sml = tv% S(i,j,k); Smr = tv% S(i,j+1 ,k)
1050
+ call calculate_density(T15, S15, p15, r15, EOS, EOSdom_q15, rho_ref= rho_ref)
994
1051
endif
995
1052
996
- do m= 2 ,4
997
- w_left = wt_t(m) ; w_right = wt_b(m)
998
-
999
- ! Salinity and temperature points are linearly interpolated in
1000
- ! the horizontal. The subscript (1) refers to the top value in
1001
- ! the vertical profile while subscript (5) refers to the bottom
1002
- ! value in the vertical profile.
1003
- T_top = w_left* Ttl + w_right* Ttr
1004
- T_mn = w_left* Tml + w_right* Tmr
1005
- T_bot = w_left* Tbl + w_right* Tbr
1006
-
1007
- S_top = w_left* Stl + w_right* Str
1008
- S_mn = w_left* Sml + w_right* Smr
1009
- S_bot = w_left* Sbl + w_right* Sbr
1010
-
1011
- ! Pressure
1012
- dz = w_left* (e(i,j,K) - e(i,j,K+1 )) + w_right* (e(i,j+1 ,K) - e(i,j+1 ,K+1 ))
1013
- p5(1 ) = - GxRho* ((w_left* e(i,j,K) + w_right* e(i,j+1 ,K)) - z0pres)
1014
- do n= 2 ,5
1015
- p5(n) = p5(n-1 ) + GxRho* 0.25 * dz
1016
- enddo
1053
+ do I= Isq,Ieq
1054
+ do m= 2 ,4
1055
+ pos = i* 15 + (m-2 )* 5
1056
+ ! Use Boole's rule to estimate the pressure anomaly change.
1057
+ intz(m) = G_e* dz_x(m,i)* ( C1_90* ( 7.0 * (r15(pos+1 )+ r15(pos+5 )) + &
1058
+ 32.0 * (r15(pos+2 )+ r15(pos+4 )) + &
1059
+ 12.0 * r15(pos+3 )) )
1060
+ enddo ! m
1061
+ intz(1 ) = dpa(i,j) ; intz(5 ) = dpa(i+1 ,j)
1017
1062
1018
- ! Parabolic reconstructions in the vertical for T and S
1019
- if (use_PPM) then
1020
- ! Coefficients of the parabolas
1021
- s6 = 3.0 * ( 2.0 * S_mn - ( S_top + S_bot ) )
1022
- t6 = 3.0 * ( 2.0 * T_mn - ( T_top + T_bot ) )
1023
- endif
1024
- do n= 1 ,5
1025
- S5(n) = wt_t(n) * S_top + wt_b(n) * ( S_bot + s6 * wt_t(n) )
1026
- T5(n) = wt_t(n) * T_top + wt_b(n) * ( T_bot + t6 * wt_t(n) )
1027
- enddo
1063
+ ! Use Boole's rule to integrate the bottom pressure anomaly values in x.
1064
+ intx_dpa(I,j) = C1_90* (7.0 * (intz(1 )+ intz(5 )) + 32.0 * (intz(2 )+ intz(4 )) + 12.0 * intz(3 ))
1028
1065
1029
- if (use_stanley_eos) then
1030
- if (use_varT) T25(:) = w_left* tv% varT(i,j,k) + w_right* tv% varT(i,j+1 ,k)
1031
- if (use_covarTS) TS5(:) = w_left* tv% covarTS(i,j,k) + w_right* tv% covarTS(i,j+1 ,k)
1032
- if (use_varS) S25(:) = w_left* tv% varS(i,j,k) + w_right* tv% varS(i,j+1 ,k)
1033
- call calculate_density(T5, S5, p5, T25, TS5, S25, r5, EOS, rho_ref= rho_ref)
1066
+ enddo
1067
+ enddo ; endif
1068
+
1069
+ ! 3. Compute horizontal integrals in the y direction
1070
+ if (present (inty_dpa)) then ; do J= Jsq,Jeq
1071
+ do i= HI% isc,HI% iec
1072
+ ! Corner values of T and S
1073
+ ! hWght is the distance measure by which the cell is violation of
1074
+ ! hydrostatic consistency. For large hWght we bias the interpolation
1075
+ ! of T,S along the top and bottom integrals, almost like thickness
1076
+ ! weighting.
1077
+ ! Note: To work in terrain following coordinates we could offset
1078
+ ! this distance by the layer thickness to replicate other models.
1079
+ hWght = massWeightToggle * &
1080
+ max (0 ., - bathyT(i,j)- e(i,j+1 ,K), - bathyT(i,j+1 )- e(i,j,K))
1081
+ if (hWght > 0 .) then
1082
+ hL = (e(i,j,K) - e(i,j,K+1 )) + dz_subroundoff
1083
+ hR = (e(i,j+1 ,K) - e(i,j+1 ,K+1 )) + dz_subroundoff
1084
+ hWght = hWght * ( (hL- hR)/ (hL+ hR) )** 2
1085
+ iDenom = 1 ./ ( hWght* (hR + hL) + hL* hR )
1086
+ Ttl = ( (hWght* hR)* T_t(i,j+1 ,k) + (hWght* hL + hR* hL)* T_t(i,j,k) ) * iDenom
1087
+ Tbl = ( (hWght* hR)* T_b(i,j+1 ,k) + (hWght* hL + hR* hL)* T_b(i,j,k) ) * iDenom
1088
+ Tml = ( (hWght* hR)* tv% T(i,j+1 ,k)+ (hWght* hL + hR* hL)* tv% T(i,j,k) ) * iDenom
1089
+ Ttr = ( (hWght* hL)* T_t(i,j,k) + (hWght* hR + hR* hL)* T_t(i,j+1 ,k) ) * iDenom
1090
+ Tbr = ( (hWght* hL)* T_b(i,j,k) + (hWght* hR + hR* hL)* T_b(i,j+1 ,k) ) * iDenom
1091
+ Tmr = ( (hWght* hL)* tv% T(i,j,k) + (hWght* hR + hR* hL)* tv% T(i,j+1 ,k) ) * iDenom
1092
+ Stl = ( (hWght* hR)* S_t(i,j+1 ,k) + (hWght* hL + hR* hL)* S_t(i,j,k) ) * iDenom
1093
+ Sbl = ( (hWght* hR)* S_b(i,j+1 ,k) + (hWght* hL + hR* hL)* S_b(i,j,k) ) * iDenom
1094
+ Sml = ( (hWght* hR)* tv% S(i,j+1 ,k)+ (hWght* hL + hR* hL)* tv% S(i,j,k) ) * iDenom
1095
+ Str = ( (hWght* hL)* S_t(i,j,k) + (hWght* hR + hR* hL)* S_t(i,j+1 ,k) ) * iDenom
1096
+ Sbr = ( (hWght* hL)* S_b(i,j,k) + (hWght* hR + hR* hL)* S_b(i,j+1 ,k) ) * iDenom
1097
+ Smr = ( (hWght* hL)* tv% S(i,j,k) + (hWght* hR + hR* hL)* tv% S(i,j+1 ,k) ) * iDenom
1034
1098
else
1035
- call calculate_density(T5, S5, p5, r5, EOS, rho_ref= rho_ref)
1099
+ Ttl = T_t(i,j,k); Tbl = T_b(i,j,k); Ttr = T_t(i,j+1 ,k); Tbr = T_b(i,j+1 ,k)
1100
+ Tml = tv% T(i,j,k); Tmr = tv% T(i,j+1 ,k)
1101
+ Stl = S_t(i,j,k); Sbl = S_b(i,j,k); Str = S_t(i,j+1 ,k); Sbr = S_b(i,j+1 ,k)
1102
+ Sml = tv% S(i,j,k); Smr = tv% S(i,j+1 ,k)
1036
1103
endif
1037
1104
1038
- ! Use Boole's rule to estimate the pressure anomaly change.
1039
- intz(m) = G_e* dz* ( C1_90* (7.0 * (r5(1 )+ r5(5 )) + 32.0 * (r5(2 )+ r5(4 )) + 12.0 * r5(3 )) )
1040
- enddo ! m
1041
- intz(1 ) = dpa(i,j) ; intz(5 ) = dpa(i,j+1 )
1105
+ do m= 2 ,4
1106
+ w_left = wt_t(m) ; w_right = wt_b(m)
1107
+
1108
+ ! Salinity and temperature points are linearly interpolated in
1109
+ ! the horizontal. The subscript (1) refers to the top value in
1110
+ ! the vertical profile while subscript (5) refers to the bottom
1111
+ ! value in the vertical profile.
1112
+ T_top = w_left* Ttl + w_right* Ttr
1113
+ T_mn = w_left* Tml + w_right* Tmr
1114
+ T_bot = w_left* Tbl + w_right* Tbr
1115
+
1116
+ S_top = w_left* Stl + w_right* Str
1117
+ S_mn = w_left* Sml + w_right* Smr
1118
+ S_bot = w_left* Sbl + w_right* Sbr
1119
+
1120
+ ! Pressure
1121
+ dz_y(m,i) = w_left* (e(i,j,K) - e(i,j,K+1 )) + w_right* (e(i,j+1 ,K) - e(i,j+1 ,K+1 ))
1122
+
1123
+ pos = i* 15 + (m-2 )* 5
1124
+ p15(pos+1 ) = - GxRho* ((w_left* e(i,j,K) + w_right* e(i,j+1 ,K)) - z0pres)
1125
+ do n= 2 ,5
1126
+ p15(pos+ n) = p15(pos+ n-1 ) + GxRho* 0.25 * dz_y(m,i)
1127
+ enddo
1128
+
1129
+ ! Parabolic reconstructions in the vertical for T and S
1130
+ if (use_PPM) then
1131
+ ! Coefficients of the parabolas
1132
+ s6 = 3.0 * ( 2.0 * S_mn - ( S_top + S_bot ) )
1133
+ t6 = 3.0 * ( 2.0 * T_mn - ( T_top + T_bot ) )
1134
+ endif
1135
+ do n= 1 ,5
1136
+ S15(pos+ n) = wt_t(n) * S_top + wt_b(n) * ( S_bot + s6 * wt_t(n) )
1137
+ T15(pos+ n) = wt_t(n) * T_top + wt_b(n) * ( T_bot + t6 * wt_t(n) )
1138
+ enddo
1139
+
1140
+ if (use_stanley_eos) then
1141
+ if (use_varT) T215(pos+1 :pos+5 ) = w_left* tv% varT(i,j,k) + w_right* tv% varT(i,j+1 ,k)
1142
+ if (use_covarTS) TS15(pos+1 :pos+5 ) = w_left* tv% covarTS(i,j,k) + w_right* tv% covarTS(i,j+1 ,k)
1143
+ if (use_varS) S215(pos+1 :pos+5 ) = w_left* tv% varS(i,j,k) + w_right* tv% varS(i,j+1 ,k)
1144
+ endif
1145
+ enddo
1146
+ enddo
1147
+
1148
+ if (use_stanley_eos) then
1149
+ call calculate_density(T15(15 * HI% isc+1 :), S15(15 * HI% isc+1 :), p15(15 * HI% isc+1 :), &
1150
+ T215(15 * HI% isc+1 :), TS15(15 * HI% isc+1 :), S215(15 * HI% isc+1 :), &
1151
+ r15(15 * HI% isc+1 :), EOS, EOSdom_h15, rho_ref= rho_ref)
1152
+ else
1153
+ call calculate_density(T15(15 * HI% isc+1 :), S15(15 * HI% isc+1 :), p15(15 * HI% isc+1 :), &
1154
+ r15(15 * HI% isc+1 :), EOS, EOSdom_h15, rho_ref= rho_ref)
1155
+ endif
1042
1156
1043
- ! Use Boole's rule to integrate the bottom pressure anomaly values in y.
1044
- inty_dpa(i,J) = C1_90* (7.0 * (intz(1 )+ intz(5 )) + 32.0 * (intz(2 )+ intz(4 )) + 12.0 * intz(3 ))
1157
+ do i= HI% isc,HI% iec
1158
+ do m= 2 ,4
1159
+ ! Use Boole's rule to estimate the pressure anomaly change.
1160
+ pos = i* 15 + (m-2 )* 5
1161
+ intz(m) = G_e* dz_y(m,i)* ( C1_90* ( 7.0 * (r15(pos+1 )+ r15(pos+5 )) + &
1162
+ 32.0 * (r15(pos+2 )+ r15(pos+4 )) + &
1163
+ 12.0 * r15(pos+3 )) )
1164
+ enddo ! m
1165
+ intz(1 ) = dpa(i,j) ; intz(5 ) = dpa(i,j+1 )
1045
1166
1046
- enddo ; enddo ; endif
1167
+ ! Use Boole's rule to integrate the bottom pressure anomaly values in y.
1168
+ inty_dpa(i,J) = C1_90* (7.0 * (intz(1 )+ intz(5 )) + 32.0 * (intz(2 )+ intz(4 )) + 12.0 * intz(3 ))
1169
+ enddo
1170
+ enddo ; endif
1047
1171
1048
1172
end subroutine int_density_dz_generic_ppm
1049
1173
@@ -1161,12 +1285,19 @@ subroutine int_spec_vol_dp_generic_pcm(T, S, p_t, p_b, alpha_ref, HI, EOS, US, d
1161
1285
! series for log(1-eps/1+eps) that assumes that |eps| < 0.34.
1162
1286
1163
1287
! Local variables
1164
- real :: T5(5 ) ! Temperatures at five quadrature points [C ~> degC]
1165
- real :: S5(5 ) ! Salinities at five quadrature points [S ~> ppt]
1166
- real :: p5(5 ) ! Pressures at five quadrature points [R L2 T-2 ~> Pa]
1167
- real :: a5(5 ) ! Specific volumes at five quadrature points [R-1 ~> m3 kg-1]
1288
+ real :: T5((5 * HI% isd+1 ):(5 * (HI% ied+2 ))) ! Temperatures along a line of subgrid locations [C ~> degC]
1289
+ real :: S5((5 * HI% isd+1 ):(5 * (HI% ied+2 ))) ! Salinities along a line of subgrid locations [S ~> ppt]
1290
+ real :: p5((5 * HI% isd+1 ):(5 * (HI% ied+2 ))) ! Pressures along a line of subgrid locations [R L2 T-2 ~> Pa]
1291
+ real :: a5((5 * HI% isd+1 ):(5 * (HI% ied+2 ))) ! Specific volumes anomalies along a line of subgrid
1292
+ ! locations [R-1 ~> m3 kg-3]
1293
+ real :: T15((15 * HI% isd+1 ):(15 * (HI% ied+1 ))) ! Temperatures at an array of subgrid locations [C ~> degC]
1294
+ real :: S15((15 * HI% isd+1 ):(15 * (HI% ied+1 ))) ! Salinities at an array of subgrid locations [S ~> ppt]
1295
+ real :: p15((15 * HI% isd+1 ):(15 * (HI% ied+1 ))) ! Pressures at an array of subgrid locations [R L2 T-2 ~> Pa]
1296
+ real :: a15((15 * HI% isd+1 ):(15 * (HI% ied+1 ))) ! Specific volumes at an array of subgrid locations [R ~> kg m-3]
1168
1297
real :: alpha_anom ! The depth averaged specific density anomaly [R-1 ~> m3 kg-1]
1169
1298
real :: dp ! The pressure change through a layer [R L2 T-2 ~> Pa]
1299
+ real :: dp_x(5 ,SZIB_(HI)) ! The pressure change through a layer along an x-line of subgrid locations [Z ~> m]
1300
+ real :: dp_y(5 ,SZI_(HI)) ! The pressure change through a layer along a y-line of subgrid locations [Z ~> m]
1170
1301
real :: hWght ! A pressure-thickness below topography [R L2 T-2 ~> Pa]
1171
1302
real :: hL, hR ! Pressure-thicknesses of the columns to the left and right [R L2 T-2 ~> Pa]
1172
1303
real :: iDenom ! The inverse of the denominator in the weights [T4 R-2 L-4 ~> Pa-2]
@@ -1178,7 +1309,10 @@ subroutine int_spec_vol_dp_generic_pcm(T, S, p_t, p_b, alpha_ref, HI, EOS, US, d
1178
1309
! 5 sub-column locations [L2 T-2 ~> m2 s-2]
1179
1310
logical :: do_massWeight ! Indicates whether to do mass weighting.
1180
1311
real , parameter :: C1_90 = 1.0 / 90.0 ! A rational constant [nondim]
1181
- integer :: Isq, Ieq, Jsq, Jeq, ish, ieh, jsh, jeh, i, j, m, n, halo
1312
+ integer , dimension (2 ) :: EOSdom_h5 ! The 5-point h-point i-computational domain for the equation of state
1313
+ integer , dimension (2 ) :: EOSdom_q15 ! The 3x5-point q-point i-computational domain for the equation of state
1314
+ integer , dimension (2 ) :: EOSdom_h15 ! The 3x5-point h-point i-computational domain for the equation of state
1315
+ integer :: Isq, Ieq, Jsq, Jeq, ish, ieh, jsh, jeh, i, j, m, n, pos, halo
1182
1316
1183
1317
Isq = HI% IscB ; Ieq = HI% IecB ; Jsq = HI% JscB ; Jeq = HI% JecB
1184
1318
halo = 0 ; if (present (halo_size)) halo = MAX (halo_size,0 )
@@ -1195,110 +1329,146 @@ subroutine int_spec_vol_dp_generic_pcm(T, S, p_t, p_b, alpha_ref, HI, EOS, US, d
1195
1329
" dP_neglect must be present if useMassWghtInterp is present and true." )
1196
1330
endif ; endif
1197
1331
1198
- do j= jsh,jeh ; do i= ish,ieh
1199
- dp = p_b(i,j) - p_t(i,j)
1200
- do n= 1 ,5
1201
- T5(n) = T(i,j) ; S5(n) = S(i,j)
1202
- p5(n) = p_b(i,j) - 0.25 * real (n-1 )* dp
1332
+ ! Set the loop ranges for equation of state calculations at various points.
1333
+ EOSdom_h5(1 ) = 1 ; EOSdom_h5(2 ) = 5 * (ieh- ish+1 )
1334
+ EOSdom_q15(1 ) = 1 ; EOSdom_q15(2 ) = 15 * (Ieq- Isq+1 )
1335
+ EOSdom_h15(1 ) = 1 ; EOSdom_h15(2 ) = 15 * (HI% iec- HI% isc+1 )
1336
+
1337
+ do j= jsh,jeh
1338
+ do i= ish,ieh
1339
+ dp = p_b(i,j) - p_t(i,j)
1340
+ pos = 5 * i
1341
+ do n= 1 ,5
1342
+ T5(pos+ n) = T(i,j) ; S5(pos+ n) = S(i,j)
1343
+ p5(pos+ n) = p_b(i,j) - 0.25 * real (n-1 )* dp
1344
+ enddo
1203
1345
enddo
1204
1346
1205
- call calculate_spec_vol(T5, S5, p5, a5, EOS, spv_ref= alpha_ref)
1347
+ call calculate_spec_vol(T5(5 * ish+1 :), S5(5 * ish+1 :), p5(5 * ish+1 :), a5(5 * ish+1 :), EOS, &
1348
+ EOSdom_h5, spv_ref= alpha_ref)
1206
1349
1207
- ! Use Boole's rule to estimate the interface height anomaly change.
1208
- alpha_anom = C1_90* (7.0 * (a5(1 )+ a5(5 )) + 32.0 * (a5(2 )+ a5(4 )) + 12.0 * a5(3 ))
1209
- dza(i,j) = dp* alpha_anom
1210
- ! Use a Boole's-rule-like fifth-order accurate estimate of the double integral of
1211
- ! the interface height anomaly.
1212
- if (present (intp_dza)) intp_dza(i,j) = 0.5 * dp** 2 * &
1213
- (alpha_anom - C1_90* (16.0 * (a5(4 )- a5(2 )) + 7.0 * (a5(5 )- a5(1 ))) )
1214
- enddo ; enddo
1350
+ do i= ish,ieh
1351
+ dp = p_b(i,j) - p_t(i,j)
1352
+ ! Use Boole's rule to estimate the interface height anomaly change.
1353
+ pos = 5 * i
1354
+ alpha_anom = C1_90* (7.0 * (a5(pos+1 )+ a5(pos+5 )) + 32.0 * (a5(pos+2 )+ a5(pos+4 )) + 12.0 * a5(pos+3 ))
1355
+ dza(i,j) = dp* alpha_anom
1356
+ ! Use a Boole's-rule-like fifth-order accurate estimate of the double integral of
1357
+ ! the interface height anomaly.
1358
+ if (present (intp_dza)) intp_dza(i,j) = 0.5 * dp** 2 * &
1359
+ (alpha_anom - C1_90* (16.0 * (a5(pos+4 )- a5(pos+2 )) + 7.0 * (a5(pos+5 )- a5(pos+1 ))) )
1360
+ enddo
1361
+ enddo
1215
1362
1216
- if (present (intx_dza)) then ; do j= HI% jsc,HI% jec ; do I= Isq,Ieq
1217
- ! hWght is the distance measure by which the cell is violation of
1218
- ! hydrostatic consistency. For large hWght we bias the interpolation of
1219
- ! T & S along the top and bottom integrals, akin to thickness weighting.
1220
- hWght = 0.0
1221
- if (do_massWeight) &
1222
- hWght = max (0 ., bathyP(i,j)- p_t(i+1 ,j), bathyP(i+1 ,j)- p_t(i,j))
1223
- if (hWght > 0 .) then
1224
- hL = (p_b(i,j) - p_t(i,j)) + dP_neglect
1225
- hR = (p_b(i+1 ,j) - p_t(i+1 ,j)) + dP_neglect
1226
- hWght = hWght * ( (hL- hR)/ (hL+ hR) )** 2
1227
- iDenom = 1.0 / ( hWght* (hR + hL) + hL* hR )
1228
- hWt_LL = (hWght* hL + hR* hL) * iDenom ; hWt_LR = (hWght* hR) * iDenom
1229
- hWt_RR = (hWght* hR + hR* hL) * iDenom ; hWt_RL = (hWght* hL) * iDenom
1230
- else
1231
- hWt_LL = 1.0 ; hWt_LR = 0.0 ; hWt_RR = 1.0 ; hWt_RL = 0.0
1232
- endif
1363
+ if (present (intx_dza)) then ; do j= HI% jsc,HI% jec
1364
+ do I= Isq,Ieq
1365
+ ! hWght is the distance measure by which the cell is violation of
1366
+ ! hydrostatic consistency. For large hWght we bias the interpolation of
1367
+ ! T & S along the top and bottom integrals, akin to thickness weighting.
1368
+ hWght = 0.0
1369
+ if (do_massWeight) &
1370
+ hWght = max (0 ., bathyP(i,j)- p_t(i+1 ,j), bathyP(i+1 ,j)- p_t(i,j))
1371
+ if (hWght > 0 .) then
1372
+ hL = (p_b(i,j) - p_t(i,j)) + dP_neglect
1373
+ hR = (p_b(i+1 ,j) - p_t(i+1 ,j)) + dP_neglect
1374
+ hWght = hWght * ( (hL- hR)/ (hL+ hR) )** 2
1375
+ iDenom = 1.0 / ( hWght* (hR + hL) + hL* hR )
1376
+ hWt_LL = (hWght* hL + hR* hL) * iDenom ; hWt_LR = (hWght* hR) * iDenom
1377
+ hWt_RR = (hWght* hR + hR* hL) * iDenom ; hWt_RL = (hWght* hL) * iDenom
1378
+ else
1379
+ hWt_LL = 1.0 ; hWt_LR = 0.0 ; hWt_RR = 1.0 ; hWt_RL = 0.0
1380
+ endif
1233
1381
1234
- intp( 1 ) = dza(i,j) ; intp( 5 ) = dza(i +1 ,j)
1235
- do m = 2 , 4
1236
- wt_L = 0.25 * real ( 5 - m) ; wt_R = 1.0 - wt_L
1237
- wtT_L = wt_L * hWt_LL + wt_R * hWt_RL ; wtT_R = wt_L * hWt_LR + wt_R * hWt_RR
1382
+ do m = 2 , 4
1383
+ wt_L = 0.25 * real ( 5 - m) ; wt_R = 1.0 - wt_L
1384
+ wtT_L = wt_L * hWt_LL + wt_R* hWt_RL ; wtT_R = wt_L* hWt_LR + wt_R * hWt_RR
1385
+ pos = i * 15 + (m -2 ) * 5
1238
1386
1239
- ! T, S, and p are interpolated in the horizontal. The p interpolation
1240
- ! is linear, but for T and S it may be thickness weighted.
1241
- p5( 1 ) = wt_L* p_b(i,j) + wt_R* p_b(i+1 ,j)
1242
- dp = wt_L* (p_b(i,j) - p_t(i,j)) + wt_R* (p_b(i+1 ,j) - p_t(i+1 ,j))
1243
- T5( 1 ) = wtT_L* T(i,j) + wtT_R* T(i+1 ,j)
1244
- S5( 1 ) = wtT_L* S(i,j) + wtT_R* S(i+1 ,j)
1387
+ ! T, S, and p are interpolated in the horizontal. The p interpolation
1388
+ ! is linear, but for T and S it may be thickness weighted.
1389
+ p15(pos + 1 ) = wt_L* p_b(i,j) + wt_R* p_b(i+1 ,j)
1390
+ dp_x(m,I) = wt_L* (p_b(i,j) - p_t(i,j)) + wt_R* (p_b(i+1 ,j) - p_t(i+1 ,j))
1391
+ T15(pos + 1 ) = wtT_L* T(i,j) + wtT_R* T(i+1 ,j)
1392
+ S15(pos + 1 ) = wtT_L* S(i,j) + wtT_R* S(i+1 ,j)
1245
1393
1246
- do n= 2 ,5
1247
- T5(n) = T5(1 ) ; S5(n) = S5(1 ) ; p5(n) = p5(n-1 ) - 0.25 * dp
1394
+ do n= 2 ,5
1395
+ T15(pos+ n) = T15(pos+1 ) ; S15(pos+ n) = S15(pos+1 )
1396
+ p15(pos+ n) = p15(pos+ n-1 ) - 0.25 * dp_x(m,I)
1397
+ enddo
1248
1398
enddo
1249
- call calculate_spec_vol(T5, S5, p5, a5, EOS, spv_ref= alpha_ref)
1399
+ enddo
1400
+
1401
+ call calculate_spec_vol(T15(15 * Isq+1 :), S15(15 * Isq+1 :), p15(15 * Isq+1 :), &
1402
+ a15(15 * Isq+1 :), EOS, EOSdom_q15, spv_ref= alpha_ref)
1250
1403
1251
- ! Use Boole's rule to estimate the interface height anomaly change.
1252
- intp(m) = dp* ( C1_90* (7.0 * (a5(1 )+ a5(5 )) + 32.0 * (a5(2 )+ a5(4 )) + &
1253
- 12.0 * a5(3 )))
1404
+ do I= Isq,Ieq
1405
+ intp(1 ) = dza(i,j) ; intp(5 ) = dza(i+1 ,j)
1406
+ ! Use Boole's rule to estimate the interface height anomaly change.
1407
+ do m= 2 ,4
1408
+ pos = i* 15 + (m-2 )* 5
1409
+ intp(m) = dp_x(m,I)* ( C1_90* (7.0 * (a15(pos+1 )+ a15(pos+5 )) + 32.0 * (a15(pos+2 )+ a15(pos+4 )) + &
1410
+ 12.0 * a15(pos+3 )))
1411
+ enddo
1412
+ ! Use Boole's rule to integrate the interface height anomaly values in x.
1413
+ intx_dza(i,j) = C1_90* (7.0 * (intp(1 )+ intp(5 )) + 32.0 * (intp(2 )+ intp(4 )) + &
1414
+ 12.0 * intp(3 ))
1254
1415
enddo
1255
- ! Use Boole's rule to integrate the interface height anomaly values in x.
1256
- intx_dza(i,j) = C1_90* (7.0 * (intp(1 )+ intp(5 )) + 32.0 * (intp(2 )+ intp(4 )) + &
1257
- 12.0 * intp(3 ))
1258
- enddo ; enddo ; endif
1416
+ enddo ; endif
1259
1417
1260
- if (present (inty_dza)) then ; do J= Jsq,Jeq ; do i= HI% isc,HI% iec
1261
- ! hWght is the distance measure by which the cell is violation of
1262
- ! hydrostatic consistency. For large hWght we bias the interpolation of
1263
- ! T & S along the top and bottom integrals, akin to thickness weighting.
1264
- hWght = 0.0
1265
- if (do_massWeight) &
1266
- hWght = max (0 ., bathyP(i,j)- p_t(i,j+1 ), bathyP(i,j+1 )- p_t(i,j))
1267
- if (hWght > 0 .) then
1268
- hL = (p_b(i,j) - p_t(i,j)) + dP_neglect
1269
- hR = (p_b(i,j+1 ) - p_t(i,j+1 )) + dP_neglect
1270
- hWght = hWght * ( (hL- hR)/ (hL+ hR) )** 2
1271
- iDenom = 1.0 / ( hWght* (hR + hL) + hL* hR )
1272
- hWt_LL = (hWght* hL + hR* hL) * iDenom ; hWt_LR = (hWght* hR) * iDenom
1273
- hWt_RR = (hWght* hR + hR* hL) * iDenom ; hWt_RL = (hWght* hL) * iDenom
1274
- else
1275
- hWt_LL = 1.0 ; hWt_LR = 0.0 ; hWt_RR = 1.0 ; hWt_RL = 0.0
1276
- endif
1418
+ if (present (inty_dza)) then ; do J= Jsq,Jeq
1419
+ do i= HI% isc,HI% iec
1420
+ ! hWght is the distance measure by which the cell is violation of
1421
+ ! hydrostatic consistency. For large hWght we bias the interpolation of
1422
+ ! T & S along the top and bottom integrals, akin to thickness weighting.
1423
+ hWght = 0.0
1424
+ if (do_massWeight) &
1425
+ hWght = max (0 ., bathyP(i,j)- p_t(i,j+1 ), bathyP(i,j+1 )- p_t(i,j))
1426
+ if (hWght > 0 .) then
1427
+ hL = (p_b(i,j) - p_t(i,j)) + dP_neglect
1428
+ hR = (p_b(i,j+1 ) - p_t(i,j+1 )) + dP_neglect
1429
+ hWght = hWght * ( (hL- hR)/ (hL+ hR) )** 2
1430
+ iDenom = 1.0 / ( hWght* (hR + hL) + hL* hR )
1431
+ hWt_LL = (hWght* hL + hR* hL) * iDenom ; hWt_LR = (hWght* hR) * iDenom
1432
+ hWt_RR = (hWght* hR + hR* hL) * iDenom ; hWt_RL = (hWght* hL) * iDenom
1433
+ else
1434
+ hWt_LL = 1.0 ; hWt_LR = 0.0 ; hWt_RR = 1.0 ; hWt_RL = 0.0
1435
+ endif
1436
+
1437
+ do m= 2 ,4
1438
+ wt_L = 0.25 * real (5 - m) ; wt_R = 1.0 - wt_L
1439
+ wtT_L = wt_L* hWt_LL + wt_R* hWt_RL ; wtT_R = wt_L* hWt_LR + wt_R* hWt_RR
1440
+ pos = i* 15 + (m-2 )* 5
1277
1441
1278
- intp(1 ) = dza(i,j) ; intp(5 ) = dza(i,j+1 )
1279
- do m= 2 ,4
1280
- wt_L = 0.25 * real (5 - m) ; wt_R = 1.0 - wt_L
1281
- wtT_L = wt_L* hWt_LL + wt_R* hWt_RL ; wtT_R = wt_L* hWt_LR + wt_R* hWt_RR
1282
-
1283
- ! T, S, and p are interpolated in the horizontal. The p interpolation
1284
- ! is linear, but for T and S it may be thickness weighted.
1285
- p5(1 ) = wt_L* p_b(i,j) + wt_R* p_b(i,j+1 )
1286
- dp = wt_L* (p_b(i,j) - p_t(i,j)) + wt_R* (p_b(i,j+1 ) - p_t(i,j+1 ))
1287
- T5(1 ) = wtT_L* T(i,j) + wtT_R* T(i,j+1 )
1288
- S5(1 ) = wtT_L* S(i,j) + wtT_R* S(i,j+1 )
1289
- do n= 2 ,5
1290
- T5(n) = T5(1 ) ; S5(n) = S5(1 ) ; p5(n) = p5(n-1 ) - 0.25 * dp
1442
+ ! T, S, and p are interpolated in the horizontal. The p interpolation
1443
+ ! is linear, but for T and S it may be thickness weighted.
1444
+ p15(pos+1 ) = wt_L* p_b(i,j) + wt_R* p_b(i,j+1 )
1445
+ dp_y(m,i) = wt_L* (p_b(i,j) - p_t(i,j)) + wt_R* (p_b(i,j+1 ) - p_t(i,j+1 ))
1446
+ T15(pos+1 ) = wtT_L* T(i,j) + wtT_R* T(i,j+1 )
1447
+ S15(pos+1 ) = wtT_L* S(i,j) + wtT_R* S(i,j+1 )
1448
+ do n= 2 ,5
1449
+ T15(pos+ n) = T15(pos+1 ) ; S15(pos+ n) = S15(pos+1 )
1450
+ p15(pos+ n) = p15(pos+ n-1 ) - 0.25 * dp_y(m,i)
1451
+ enddo
1291
1452
enddo
1292
- call calculate_spec_vol(T5, S5, p5, a5, EOS, spv_ref= alpha_ref)
1453
+ enddo
1454
+
1455
+ call calculate_spec_vol(T15(15 * HI% isc+1 :), S15(15 * HI% isc+1 :), p15(15 * HI% isc+1 :), &
1456
+ a15(15 * HI% isc+1 :), EOS, EOSdom_h15, spv_ref= alpha_ref)
1457
+
1458
+ do i= HI% isc,HI% iec
1293
1459
1294
- ! Use Boole's rule to estimate the interface height anomaly change.
1295
- intp(m) = dp* ( C1_90* (7.0 * (a5(1 )+ a5(5 )) + 32.0 * (a5(2 )+ a5(4 )) + &
1296
- 12.0 * a5(3 )))
1460
+ intp(1 ) = dza(i,j) ; intp(5 ) = dza(i,j+1 )
1461
+ ! Use Boole's rule to estimate the interface height anomaly change.
1462
+ do m= 2 ,4
1463
+ pos = i* 15 + (m-2 )* 5
1464
+ intp(m) = dp_y(m,i)* ( C1_90* (7.0 * (a15(pos+1 )+ a15(pos+5 )) + 32.0 * (a15(pos+2 )+ a15(pos+4 )) + &
1465
+ 12.0 * a15(pos+3 )))
1466
+ enddo
1467
+ ! Use Boole's rule to integrate the interface height anomaly values in y.
1468
+ inty_dza(i,j) = C1_90* (7.0 * (intp(1 )+ intp(5 )) + 32.0 * (intp(2 )+ intp(4 )) + &
1469
+ 12.0 * intp(3 ))
1297
1470
enddo
1298
- ! Use Boole's rule to integrate the interface height anomaly values in y.
1299
- inty_dza(i,j) = C1_90* (7.0 * (intp(1 )+ intp(5 )) + 32.0 * (intp(2 )+ intp(4 )) + &
1300
- 12.0 * intp(3 ))
1301
- enddo ; enddo ; endif
1471
+ enddo ; endif
1302
1472
1303
1473
end subroutine int_spec_vol_dp_generic_pcm
1304
1474
@@ -1358,22 +1528,23 @@ subroutine int_spec_vol_dp_generic_plm(T_t, T_b, S_t, S_b, p_t, p_b, alpha_ref,
1358
1528
! Boole's rule to do the horizontal integrals, and from a truncation in the
1359
1529
! series for log(1-eps/1+eps) that assumes that |eps| < 0.34.
1360
1530
1361
- real :: T5(5 ) ! Temperatures at five quadrature points [C ~> degC]
1362
- real :: S5(5 ) ! Salinities at five quadrature points [S ~> ppt]
1363
- real :: p5(5 ) ! Pressures at five quadrature points [R L2 T-2 ~> Pa]
1364
- real :: a5(5 ) ! Specific volumes at five quadrature points [R-1 ~> m3 kg-1]
1365
- real :: T15(15 ) ! Temperatures at fifteen interior quadrature points [C ~> degC]
1366
- real :: S15(15 ) ! Salinities at fifteen interior quadrature points [S ~> ppt]
1367
- real :: p15(15 ) ! Pressures at fifteen quadrature points [R L2 T-2 ~> Pa]
1368
- real :: a15(15 ) ! Specific volumes at fifteen quadrature points [R-1 ~> m3 kg-1]
1531
+ real :: T5((5 * HI% iscB+1 ):(5 * (HI% iecB+2 ))) ! Temperatures along a line of subgrid locations [C ~> degC]
1532
+ real :: S5((5 * HI% iscB+1 ):(5 * (HI% iecB+2 ))) ! Salinities along a line of subgrid locations [S ~> ppt]
1533
+ real :: p5((5 * HI% iscB+1 ):(5 * (HI% iecB+2 ))) ! Pressures along a line of subgrid locations [R L2 T-2 ~> Pa]
1534
+ real :: a5((5 * HI% iscB+1 ):(5 * (HI% iecB+2 ))) ! Specific volumes anomalies along a line of subgrid
1535
+ ! locations [R-1 ~> m3 kg-3]
1536
+ real :: T15((15 * HI% iscB+1 ):(15 * (HI% iecB+1 ))) ! Temperatures at an array of subgrid locations [C ~> degC]
1537
+ real :: S15((15 * HI% iscB+1 ):(15 * (HI% iecB+1 ))) ! Salinities at an array of subgrid locations [S ~> ppt]
1538
+ real :: p15((15 * HI% iscB+1 ):(15 * (HI% iecB+1 ))) ! Pressures at an array of subgrid locations [R L2 T-2 ~> Pa]
1539
+ real :: a15((15 * HI% iscB+1 ):(15 * (HI% iecB+1 ))) ! Specific volumes at an array of subgrid locations [R ~> kg m-3]
1369
1540
real :: wt_t(5 ), wt_b(5 ) ! Weights of top and bottom values at quadrature points [nondim]
1370
1541
real :: T_top, T_bot ! Horizontally interpolated temperature at the cell top and bottom [C ~> degC]
1371
1542
real :: S_top, S_bot ! Horizontally interpolated salinity at the cell top and bottom [S ~> ppt]
1372
1543
real :: P_top, P_bot ! Horizontally interpolated pressure at the cell top and bottom [R L2 T-2 ~> Pa]
1373
1544
1374
1545
real :: alpha_anom ! The depth averaged specific density anomaly [R-1 ~> m3 kg-1]
1375
1546
real :: dp ! The pressure change through a layer [R L2 T-2 ~> Pa]
1376
- real :: dp_90(2 :4 ) ! The pressure change through a layer divided by 90 [R L2 T-2 ~> Pa]
1547
+ real :: dp_90(2 :4 ,SZIB_(HI) ) ! The pressure change through a layer divided by 90 [R L2 T-2 ~> Pa]
1377
1548
real :: hWght ! A pressure-thickness below topography [R L2 T-2 ~> Pa]
1378
1549
real :: hL, hR ! Pressure-thicknesses of the columns to the left and right [R L2 T-2 ~> Pa]
1379
1550
real :: iDenom ! The inverse of the denominator in the weights [T4 R-2 L-4 ~> Pa-2]
@@ -1385,6 +1556,9 @@ subroutine int_spec_vol_dp_generic_plm(T_t, T_b, S_t, S_b, p_t, p_b, alpha_ref,
1385
1556
! 5 sub-column locations [L2 T-2 ~> m2 s-2]
1386
1557
real , parameter :: C1_90 = 1.0 / 90.0 ! A rational constant [nondim]
1387
1558
logical :: do_massWeight ! Indicates whether to do mass weighting.
1559
+ integer , dimension (2 ) :: EOSdom_h5 ! The 5-point h-point i-computational domain for the equation of state
1560
+ integer , dimension (2 ) :: EOSdom_q15 ! The 3x5-point q-point i-computational domain for the equation of state
1561
+ integer , dimension (2 ) :: EOSdom_h15 ! The 3x5-point h-point i-computational domain for the equation of state
1388
1562
integer :: Isq, Ieq, Jsq, Jeq, i, j, m, n, pos
1389
1563
1390
1564
Isq = HI% IscB ; Ieq = HI% IecB ; Jsq = HI% JscB ; Jeq = HI% JecB
@@ -1397,140 +1571,157 @@ subroutine int_spec_vol_dp_generic_plm(T_t, T_b, S_t, S_b, p_t, p_b, alpha_ref,
1397
1571
wt_b(n) = 1.0 - wt_t(n)
1398
1572
enddo
1399
1573
1574
+ ! Set the loop ranges for equation of state calculations at various points.
1575
+ EOSdom_h5(1 ) = 1 ; EOSdom_h5(2 ) = 5 * (Ieq- Isq+2 )
1576
+ EOSdom_q15(1 ) = 1 ; EOSdom_q15(2 ) = 15 * (Ieq- Isq+1 )
1577
+ EOSdom_h15(1 ) = 1 ; EOSdom_h15(2 ) = 15 * (HI% iec- HI% isc+1 )
1578
+
1400
1579
! 1. Compute vertical integrals
1401
- do j= Jsq,Jeq+1 ; do i= Isq,Ieq+1
1402
- dp = p_b(i,j) - p_t(i,j)
1403
- do n= 1 ,5 ! T, S and p are linearly interpolated in the vertical.
1404
- p5(n) = wt_t(n) * p_t(i,j) + wt_b(n) * p_b(i,j)
1405
- S5(n) = wt_t(n) * S_t(i,j) + wt_b(n) * S_b(i,j)
1406
- T5(n) = wt_t(n) * T_t(i,j) + wt_b(n) * T_b(i,j)
1580
+ do j= Jsq,Jeq+1
1581
+ do i= Isq,Ieq+1
1582
+ do n= 1 ,5 ! T, S and p are linearly interpolated in the vertical.
1583
+ p5(i* 5 + n) = wt_t(n) * p_t(i,j) + wt_b(n) * p_b(i,j)
1584
+ S5(i* 5 + n) = wt_t(n) * S_t(i,j) + wt_b(n) * S_b(i,j)
1585
+ T5(i* 5 + n) = wt_t(n) * T_t(i,j) + wt_b(n) * T_b(i,j)
1586
+ enddo
1407
1587
enddo
1408
- call calculate_spec_vol(T5, S5, p5, a5, EOS, spv_ref= alpha_ref)
1409
-
1410
- ! Use Boole's rule to estimate the interface height anomaly change.
1411
- alpha_anom = C1_90* ((7.0 * (a5(1 )+ a5(5 )) + 32.0 * (a5(2 )+ a5(4 ))) + 12.0 * a5(3 ))
1412
- dza(i,j) = dp* alpha_anom
1413
- ! Use a Boole's-rule-like fifth-order accurate estimate of the double integral of
1414
- ! the interface height anomaly.
1415
- if (present (intp_dza)) intp_dza(i,j) = 0.5 * dp** 2 * &
1416
- (alpha_anom - C1_90* (16.0 * (a5(4 )- a5(2 )) + 7.0 * (a5(5 )- a5(1 ))) )
1417
- enddo ; enddo
1588
+ call calculate_spec_vol(T5, S5, p5, a5, EOS, EOSdom_h5, spv_ref= alpha_ref)
1589
+ do i= Isq,Ieq+1
1590
+ ! Use Boole's rule to estimate the interface height anomaly change.
1591
+ dp = p_b(i,j) - p_t(i,j)
1592
+ alpha_anom = C1_90* ((7.0 * (a5(i* 5+1 )+ a5(i* 5+5 )) + 32.0 * (a5(i* 5+2 )+ a5(i* 5+4 ))) + 12.0 * a5(i* 5+3 ))
1593
+ dza(i,j) = dp* alpha_anom
1594
+ ! Use a Boole's-rule-like fifth-order accurate estimate of the double integral of
1595
+ ! the interface height anomaly.
1596
+ if (present (intp_dza)) intp_dza(i,j) = 0.5 * dp** 2 * &
1597
+ (alpha_anom - C1_90* (16.0 * (a5(i* 5+4 )- a5(i* 5+2 )) + 7.0 * (a5(i* 5+5 )- a5(i* 5+1 ))) )
1598
+ enddo
1599
+ enddo
1418
1600
1419
1601
! 2. Compute horizontal integrals in the x direction
1420
- if (present (intx_dza)) then ; do j= HI% jsc,HI% jec ; do I= Isq,Ieq
1421
- ! hWght is the distance measure by which the cell is violation of
1422
- ! hydrostatic consistency. For large hWght we bias the interpolation
1423
- ! of T,S along the top and bottom integrals, almost like thickness
1424
- ! weighting. Note: To work in terrain following coordinates we could
1425
- ! offset this distance by the layer thickness to replicate other models.
1426
- hWght = 0.0
1427
- if (do_massWeight) &
1428
- hWght = max (0 ., bathyP(i,j)- p_t(i+1 ,j), bathyP(i+1 ,j)- p_t(i,j))
1429
- if (hWght > 0 .) then
1430
- hL = (p_b(i,j) - p_t(i,j)) + dP_neglect
1431
- hR = (p_b(i+1 ,j) - p_t(i+1 ,j)) + dP_neglect
1432
- hWght = hWght * ( (hL- hR)/ (hL+ hR) )** 2
1433
- iDenom = 1.0 / ( hWght* (hR + hL) + hL* hR )
1434
- hWt_LL = (hWght* hL + hR* hL) * iDenom ; hWt_LR = (hWght* hR) * iDenom
1435
- hWt_RR = (hWght* hR + hR* hL) * iDenom ; hWt_RL = (hWght* hL) * iDenom
1436
- else
1437
- hWt_LL = 1.0 ; hWt_LR = 0.0 ; hWt_RR = 1.0 ; hWt_RL = 0.0
1438
- endif
1602
+ if (present (intx_dza)) then ; do j= HI% jsc,HI% jec
1603
+ do I= Isq,Ieq
1604
+ ! hWght is the distance measure by which the cell is violation of
1605
+ ! hydrostatic consistency. For large hWght we bias the interpolation
1606
+ ! of T,S along the top and bottom integrals, almost like thickness
1607
+ ! weighting. Note: To work in terrain following coordinates we could
1608
+ ! offset this distance by the layer thickness to replicate other models.
1609
+ hWght = 0.0
1610
+ if (do_massWeight) &
1611
+ hWght = max (0 ., bathyP(i,j)- p_t(i+1 ,j), bathyP(i+1 ,j)- p_t(i,j))
1612
+ if (hWght > 0 .) then
1613
+ hL = (p_b(i,j) - p_t(i,j)) + dP_neglect
1614
+ hR = (p_b(i+1 ,j) - p_t(i+1 ,j)) + dP_neglect
1615
+ hWght = hWght * ( (hL- hR)/ (hL+ hR) )** 2
1616
+ iDenom = 1.0 / ( hWght* (hR + hL) + hL* hR )
1617
+ hWt_LL = (hWght* hL + hR* hL) * iDenom ; hWt_LR = (hWght* hR) * iDenom
1618
+ hWt_RR = (hWght* hR + hR* hL) * iDenom ; hWt_RL = (hWght* hL) * iDenom
1619
+ else
1620
+ hWt_LL = 1.0 ; hWt_LR = 0.0 ; hWt_RR = 1.0 ; hWt_RL = 0.0
1621
+ endif
1439
1622
1440
- do m= 2 ,4
1441
- wt_L = 0.25 * real (5 - m) ; wt_R = 1.0 - wt_L
1442
- wtT_L = wt_L* hWt_LL + wt_R* hWt_RL ; wtT_R = wt_L* hWt_LR + wt_R* hWt_RR
1443
-
1444
- ! T, S, and p are interpolated in the horizontal. The p interpolation
1445
- ! is linear, but for T and S it may be thickness weighted.
1446
- P_top = wt_L* p_t(i,j) + wt_R* p_t(i+1 ,j)
1447
- P_bot = wt_L* p_b(i,j) + wt_R* p_b(i+1 ,j)
1448
- T_top = wtT_L* T_t(i,j) + wtT_R* T_t(i+1 ,j)
1449
- T_bot = wtT_L* T_b(i,j) + wtT_R* T_b(i+1 ,j)
1450
- S_top = wtT_L* S_t(i,j) + wtT_R* S_t(i+1 ,j)
1451
- S_bot = wtT_L* S_b(i,j) + wtT_R* S_b(i+1 ,j)
1452
- dp_90(m) = C1_90* (P_bot - P_top)
1453
-
1454
- ! Salinity, temperature and pressure with linear interpolation in the vertical.
1455
- pos = (m-2 )* 5
1456
- do n= 1 ,5
1457
- p15(pos+ n) = wt_t(n) * P_top + wt_b(n) * P_bot
1458
- S15(pos+ n) = wt_t(n) * S_top + wt_b(n) * S_bot
1459
- T15(pos+ n) = wt_t(n) * T_top + wt_b(n) * T_bot
1623
+ do m= 2 ,4
1624
+ wt_L = 0.25 * real (5 - m) ; wt_R = 1.0 - wt_L
1625
+ wtT_L = wt_L* hWt_LL + wt_R* hWt_RL ; wtT_R = wt_L* hWt_LR + wt_R* hWt_RR
1626
+
1627
+ ! T, S, and p are interpolated in the horizontal. The p interpolation
1628
+ ! is linear, but for T and S it may be thickness weighted.
1629
+ P_top = wt_L* p_t(i,j) + wt_R* p_t(i+1 ,j)
1630
+ P_bot = wt_L* p_b(i,j) + wt_R* p_b(i+1 ,j)
1631
+ T_top = wtT_L* T_t(i,j) + wtT_R* T_t(i+1 ,j)
1632
+ T_bot = wtT_L* T_b(i,j) + wtT_R* T_b(i+1 ,j)
1633
+ S_top = wtT_L* S_t(i,j) + wtT_R* S_t(i+1 ,j)
1634
+ S_bot = wtT_L* S_b(i,j) + wtT_R* S_b(i+1 ,j)
1635
+ dp_90(m,I) = C1_90* (P_bot - P_top)
1636
+
1637
+ ! Salinity, temperature and pressure with linear interpolation in the vertical.
1638
+ pos = i* 15 + (m-2 )* 5
1639
+ do n= 1 ,5
1640
+ p15(pos+ n) = wt_t(n) * P_top + wt_b(n) * P_bot
1641
+ S15(pos+ n) = wt_t(n) * S_top + wt_b(n) * S_bot
1642
+ T15(pos+ n) = wt_t(n) * T_top + wt_b(n) * T_bot
1643
+ enddo
1460
1644
enddo
1461
1645
enddo
1462
1646
1463
- call calculate_spec_vol(T15, S15, p15, a15, EOS, spv_ref= alpha_ref)
1647
+ call calculate_spec_vol(T15, S15, p15, a15, EOS, EOSdom_q15, spv_ref= alpha_ref)
1464
1648
1465
- intp(1 ) = dza(i,j) ; intp(5 ) = dza(i+1 ,j)
1466
- do m= 2 ,4
1467
- ! Use Boole's rule to estimate the interface height anomaly change.
1468
- ! The integrals at the ends of the segment are already known.
1469
- pos = (m-2 )* 5
1470
- intp(m) = dp_90(m)* ((7.0 * (a15(pos+1 )+ a15(pos+5 )) + &
1471
- 32.0 * (a15(pos+2 )+ a15(pos+4 ))) + 12.0 * a15(pos+3 ))
1649
+ do I= Isq,Ieq
1650
+ intp(1 ) = dza(i,j) ; intp(5 ) = dza(i+1 ,j)
1651
+ do m= 2 ,4
1652
+ ! Use Boole's rule to estimate the interface height anomaly change.
1653
+ ! The integrals at the ends of the segment are already known.
1654
+ pos = I* 15 + (m-2 )* 5
1655
+ intp(m) = dp_90(m,I)* ((7.0 * (a15(pos+1 )+ a15(pos+5 )) + &
1656
+ 32.0 * (a15(pos+2 )+ a15(pos+4 ))) + 12.0 * a15(pos+3 ))
1657
+ enddo
1658
+ ! Use Boole's rule to integrate the interface height anomaly values in x.
1659
+ intx_dza(I,j) = C1_90* ((7.0 * (intp(1 )+ intp(5 )) + 32.0 * (intp(2 )+ intp(4 ))) + &
1660
+ 12.0 * intp(3 ))
1472
1661
enddo
1473
- ! Use Boole's rule to integrate the interface height anomaly values in x.
1474
- intx_dza(I,j) = C1_90* ((7.0 * (intp(1 )+ intp(5 )) + 32.0 * (intp(2 )+ intp(4 ))) + &
1475
- 12.0 * intp(3 ))
1476
- enddo ; enddo ; endif
1662
+ enddo ; endif
1477
1663
1478
1664
! 3. Compute horizontal integrals in the y direction
1479
- if (present (inty_dza)) then ; do J= Jsq,Jeq ; do i= HI% isc,HI% iec
1480
- ! hWght is the distance measure by which the cell is violation of
1481
- ! hydrostatic consistency. For large hWght we bias the interpolation
1482
- ! of T,S along the top and bottom integrals, like thickness weighting.
1483
- hWght = 0.0
1484
- if (do_massWeight) &
1485
- hWght = max (0 ., bathyP(i,j)- p_t(i,j+1 ), bathyP(i,j+1 )- p_t(i,j))
1486
- if (hWght > 0 .) then
1487
- hL = (p_b(i,j) - p_t(i,j)) + dP_neglect
1488
- hR = (p_b(i,j+1 ) - p_t(i,j+1 )) + dP_neglect
1489
- hWght = hWght * ( (hL- hR)/ (hL+ hR) )** 2
1490
- iDenom = 1.0 / ( hWght* (hR + hL) + hL* hR )
1491
- hWt_LL = (hWght* hL + hR* hL) * iDenom ; hWt_LR = (hWght* hR) * iDenom
1492
- hWt_RR = (hWght* hR + hR* hL) * iDenom ; hWt_RL = (hWght* hL) * iDenom
1493
- else
1494
- hWt_LL = 1.0 ; hWt_LR = 0.0 ; hWt_RR = 1.0 ; hWt_RL = 0.0
1495
- endif
1665
+ if (present (inty_dza)) then ; do J= Jsq,Jeq
1666
+ do i= HI% isc,HI% iec
1667
+ ! hWght is the distance measure by which the cell is violation of
1668
+ ! hydrostatic consistency. For large hWght we bias the interpolation
1669
+ ! of T,S along the top and bottom integrals, like thickness weighting.
1670
+ hWght = 0.0
1671
+ if (do_massWeight) &
1672
+ hWght = max (0 ., bathyP(i,j)- p_t(i,j+1 ), bathyP(i,j+1 )- p_t(i,j))
1673
+ if (hWght > 0 .) then
1674
+ hL = (p_b(i,j) - p_t(i,j)) + dP_neglect
1675
+ hR = (p_b(i,j+1 ) - p_t(i,j+1 )) + dP_neglect
1676
+ hWght = hWght * ( (hL- hR)/ (hL+ hR) )** 2
1677
+ iDenom = 1.0 / ( hWght* (hR + hL) + hL* hR )
1678
+ hWt_LL = (hWght* hL + hR* hL) * iDenom ; hWt_LR = (hWght* hR) * iDenom
1679
+ hWt_RR = (hWght* hR + hR* hL) * iDenom ; hWt_RL = (hWght* hL) * iDenom
1680
+ else
1681
+ hWt_LL = 1.0 ; hWt_LR = 0.0 ; hWt_RR = 1.0 ; hWt_RL = 0.0
1682
+ endif
1496
1683
1497
- do m= 2 ,4
1498
- wt_L = 0.25 * real (5 - m) ; wt_R = 1.0 - wt_L
1499
- wtT_L = wt_L* hWt_LL + wt_R* hWt_RL ; wtT_R = wt_L* hWt_LR + wt_R* hWt_RR
1500
-
1501
- ! T, S, and p are interpolated in the horizontal. The p interpolation
1502
- ! is linear, but for T and S it may be thickness weighted.
1503
- P_top = wt_L* p_t(i,j) + wt_R* p_t(i,j+1 )
1504
- P_bot = wt_L* p_b(i,j) + wt_R* p_b(i,j+1 )
1505
- T_top = wtT_L* T_t(i,j) + wtT_R* T_t(i,j+1 )
1506
- T_bot = wtT_L* T_b(i,j) + wtT_R* T_b(i,j+1 )
1507
- S_top = wtT_L* S_t(i,j) + wtT_R* S_t(i,j+1 )
1508
- S_bot = wtT_L* S_b(i,j) + wtT_R* S_b(i,j+1 )
1509
- dp_90(m) = C1_90* (P_bot - P_top)
1510
-
1511
- ! Salinity, temperature and pressure with linear interpolation in the vertical.
1512
- pos = (m-2 )* 5
1513
- do n= 1 ,5
1514
- p15(pos+ n) = wt_t(n) * P_top + wt_b(n) * P_bot
1515
- S15(pos+ n) = wt_t(n) * S_top + wt_b(n) * S_bot
1516
- T15(pos+ n) = wt_t(n) * T_top + wt_b(n) * T_bot
1684
+ do m= 2 ,4
1685
+ wt_L = 0.25 * real (5 - m) ; wt_R = 1.0 - wt_L
1686
+ wtT_L = wt_L* hWt_LL + wt_R* hWt_RL ; wtT_R = wt_L* hWt_LR + wt_R* hWt_RR
1687
+
1688
+ ! T, S, and p are interpolated in the horizontal. The p interpolation
1689
+ ! is linear, but for T and S it may be thickness weighted.
1690
+ P_top = wt_L* p_t(i,j) + wt_R* p_t(i,j+1 )
1691
+ P_bot = wt_L* p_b(i,j) + wt_R* p_b(i,j+1 )
1692
+ T_top = wtT_L* T_t(i,j) + wtT_R* T_t(i,j+1 )
1693
+ T_bot = wtT_L* T_b(i,j) + wtT_R* T_b(i,j+1 )
1694
+ S_top = wtT_L* S_t(i,j) + wtT_R* S_t(i,j+1 )
1695
+ S_bot = wtT_L* S_b(i,j) + wtT_R* S_b(i,j+1 )
1696
+ dp_90(m,i) = C1_90* (P_bot - P_top)
1697
+
1698
+ ! Salinity, temperature and pressure with linear interpolation in the vertical.
1699
+ pos = i* 15 + (m-2 )* 5
1700
+ do n= 1 ,5
1701
+ p15(pos+ n) = wt_t(n) * P_top + wt_b(n) * P_bot
1702
+ S15(pos+ n) = wt_t(n) * S_top + wt_b(n) * S_bot
1703
+ T15(pos+ n) = wt_t(n) * T_top + wt_b(n) * T_bot
1704
+ enddo
1517
1705
enddo
1518
1706
enddo
1519
1707
1520
- call calculate_spec_vol(T15, S15, p15, a15, EOS, spv_ref= alpha_ref)
1708
+ call calculate_spec_vol(T15(15 * HI% isc+1 :), S15(15 * HI% isc+1 :), p15(15 * HI% isc+1 :), &
1709
+ a15(15 * HI% isc+1 :), EOS, EOSdom_h15, spv_ref= alpha_ref)
1521
1710
1522
- intp(1 ) = dza(i,j) ; intp(5 ) = dza(i,j+1 )
1523
- do m= 2 ,4
1524
- ! Use Boole's rule to estimate the interface height anomaly change.
1525
- ! The integrals at the ends of the segment are already known.
1526
- pos = (m-2 )* 5
1527
- intp(m) = dp_90(m) * ((7.0 * (a15(pos+1 )+ a15(pos+5 )) + &
1528
- 32.0 * (a15(pos+2 )+ a15(pos+4 ))) + 12.0 * a15(pos+3 ))
1711
+ do i= HI% isc,HI% iec
1712
+ intp(1 ) = dza(i,j) ; intp(5 ) = dza(i,j+1 )
1713
+ do m= 2 ,4
1714
+ ! Use Boole's rule to estimate the interface height anomaly change.
1715
+ ! The integrals at the ends of the segment are already known.
1716
+ pos = i* 15 + (m-2 )* 5
1717
+ intp(m) = dp_90(m,i) * ((7.0 * (a15(pos+1 )+ a15(pos+5 )) + &
1718
+ 32.0 * (a15(pos+2 )+ a15(pos+4 ))) + 12.0 * a15(pos+3 ))
1719
+ enddo
1720
+ ! Use Boole's rule to integrate the interface height anomaly values in x.
1721
+ inty_dza(i,J) = C1_90* ((7.0 * (intp(1 )+ intp(5 )) + 32.0 * (intp(2 )+ intp(4 ))) + &
1722
+ 12.0 * intp(3 ))
1529
1723
enddo
1530
- ! Use Boole's rule to integrate the interface height anomaly values in x.
1531
- inty_dza(i,J) = C1_90* ((7.0 * (intp(1 )+ intp(5 )) + 32.0 * (intp(2 )+ intp(4 ))) + &
1532
- 12.0 * intp(3 ))
1533
- enddo ; enddo ; endif
1724
+ enddo ; endif
1534
1725
1535
1726
end subroutine int_spec_vol_dp_generic_plm
1536
1727
0 commit comments