Skip to content

Run yolov3 on Kendryte K210 (an AI capable SoC)

License

Notifications You must be signed in to change notification settings

NeuerUser/K210-Tracking

 
 

Repository files navigation

Kendryte K210 Animal Tracking

Kendryte Standalone SDK

Demo

demo

Analysis tool

Now available TrackingAnalyze

Train

Train yolo model using darknet or this repo.

To conver your keras model to kmodel, MaixPy_scripts or nncase can be used.

First prepare your yolo.h5 file, then

tflite_convert --keras_model_file=yolo.h5 --output_file=yolo.tflite
./tflite2kmodel.sh yolo.tflite

Usage

Compile

  • Ubuntu

Download RISC-V 64bit toolchain for Kendryte K210_ubuntu_amd64 from https://kendryte.com/downloads/.

Extract it to /opt/riscv-toolchain, and add export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/riscv-toolchain/bin/ to bashrc.

mkdir build && cd build
cmake .. -DPROJ=yolo3_frame_test_public_maixpy -DTOOLCHAIN=/opt/riscv-toolchain/bin && make
  • Windows

Download and install CMake and the latest toolchain.

mkdir build && cd build
cmake -G "MinGW Makefiles" .. -DPROJ=yolo3_frame_test_public_maixpy -DTOOLCHAIN=/path/to/toolchain/bin
make

flash

You will get yolo3_frame_test_public_maixpy.bin.

If you want to flash it in UOG, using yolo3_frame_test_public_maixpy.bin, then using flash-tool(s) burn it to your flash.

sudo kflash yolo3_frame_test_public_maixpy.bin -B dockE -p /dev/ttyUSB0 -b 3000000 -t

You may want to flash your bin and model toghther with kfpkg

cp ../src/yolo3_frame_test_public_maixpy/kfpkg/kpu_yolov3.kfpkg .
zip kpu_yolov3.kfpkg yolo.kmodel yolo3_frame_test_public_maixpy.bin
sudo kflash kpu_yolov3.kfpkg -B dockE -p /dev/ttyUSB0 -b 3000000 -t

Credit

About

Run yolov3 on Kendryte K210 (an AI capable SoC)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C 96.8%
  • Python 1.1%
  • Other 2.1%