Skip to content

Nikhel1/Gal-DINO

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Gal-DINO

Journal Paper

NeurIPS 2023

Installation

Create a Python 3.10.9 environement with CUDA 11.6.2. Then, install PyTorch 1.5.1+ and torchvision 0.6.1+:

conda create -n gal-dino python==3.10.9
conda activate gal-dino

For Pawsey Setonix continue with (as of 22.4.2024):

module load rocm/5.6.1 gcc/12.2.0  gromacs-amd-gfx90a/2023.2
pip install torch==2.1.0 torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm5.6

Otherwise:

conda install -c pytorch pytorch torchvision

In both cases install packages in requirements.txt.

conda install conda-forge::opencv
pip install -r requirements.txt

Compiling CUDA operators

cd models/dino/ops
CPLUS_INCLUDE_PATH=$CONDA_PREFIX/targets/x86_64-linux/include/ python setup.py build
python setup.py install
# unit test (should see all checking is True). Note you may run out of GPU memory so adjust 'for channels in [..]' in test.py accordingly
python test.py
cd -

Data preparation

Download and extract RadioGalaxyNET data from here (for Pawsey Setonix follow the link and select s3 rclone method after clicking download. You will get a command to paste into Setonix term). We expect the directory structure to be the following:

./RadioGalaxyNET/
  annotations/  # annotation json files
  train/    # train images
  val/      # val images
  test/     # test images

Training

To train on a single node with single gpu run:

python -m torch.distributed.launch --nproc_per_node=1 --use_env main.py -c config/DINO/DINO_4scale.py

To ease reproduction of our results we provide model checkpoint here. Place the model in ./outputs_gal/ directory.

Evaluation

To evaluate on test images with a single GPU run:

python -m torch.distributed.launch --nproc_per_node=1 --use_env main.py -c config/DINO/DINO_4scale.py --eval --resume outputs_gal/checkpoint.pth

License

Apache 2.0 license.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published