Generative Manifold Networks is a generalization of nonlinear dynamical systems from a single state-space with a manifold operator, to an interconnected network of operators on the state-space(s) introduced by Pao et al.
GMN is developed at the Biological Nonlinear Dynamics Data Science Unit, OIST
Python Package Index (PyPI) gmn.
pip install gmn
Example usage at the python prompt in directory gmn
:
>>> import gmn
>>> G = gmn.GMN( configFile = './config/default.cfg' )
>>> G.Generate()
>>> G.DataOut.tail()
Time A B C D Out
295 996 -2.487000e-01 0.927389 -0.5018 0.383759 -0.902106
296 997 -1.874000e-01 0.973968 -0.4708 0.471114 -0.961839
297 998 -1.253000e-01 0.989932 -0.4248 0.540129 -0.989022
298 999 -6.280002e-02 0.984369 -0.3671 0.591274 -0.986631
299 1000 -2.438686e-08 0.957464 -0.3016 0.624011 -0.951023
Experimentally testable whole brain manifolds that recapitulate behavior