Skip to content

NoteXYX/zhihu

 
 

Repository files navigation

简介

该Repo内容为知乎专栏《机器不学习》的源代码。

专栏地址:https://zhuanlan.zhihu.com/zhaoyeyu

代码框架

TensorFlow

包含内容

1.anna_lstm

基于RNN(LSTM)对《安娜卡列尼娜》英文文本的学习,实现一个字符级别的生成器。

文章地址:《安娜卡列尼娜》文本生成——利用TensorFlow构建LSTM模型

2.skip-gram

实现skip-gram算法的Word2Vec,基于对英文语料的训练,模型学的各个单词的嵌入向量。

文章地址:基于TensorFlow实现Skip-Gram模型

3.generate_lyrics

基于RNN实现歌词生成器。

4.basic_seq2seq

基于RNN Encoder-Decoder结构的Seq2Seq模型,实现对一个单词中字母的排序。

文章地址:从Encoder到Decoder实现Seq2Seq模型

5.denoise_auto_encoder

基于MNIST手写数据集训练了一个自编码器,并在此基础上增加卷积层实现一个卷积自编码器,从而实现对图像的降噪。

文章地址:利用卷积自编码器对图片进行降噪

6.cifar_cnn

对Kaggle上CIFAR图像分类比赛的一个实现,分别对比了KNN和卷积神经网络在数据上的表现效果。

文章地址:利用卷积神经网络处理CIFAR图像分类

7.mnist_gan

基于MNIST手写数据集,训练了一个隐层为Leaky ReLU的生成对抗网络,让模型学会自己生成手写数字。

文章地址:生成对抗网络(GAN)之MNIST数据生成

8.dcgan

基于MNIST数据集训练了一个DCGAN,加入了Batch normalization,加速模型收敛并提升新能。

文章地址:深度卷积GAN之图像生成

基于CIFAR数据集中的马的图像训练一个DCGAN生成马的图像。

9.batch_normalization_discussion

该部分代码基于MNIST手写数据集构造了一个三层的全连接层神经网络。通过改变不同参数来测试BN对于模型性能的影响。同时利用TensorFlow实现底层的batch normalization。

不定期更新干货,欢迎Star,欢迎Fork。

About

知乎专栏源码

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 77.6%
  • HTML 22.3%
  • Python 0.1%