=========================
=========================
DATA
DATA/CYTOKINES
DATA/DATABASES
DATA/FUSION
DATA/PANEL_1
DATA/PANEL_2
DATA/PANEL_3
DATA/PANEL_4
DATA/PANEL_5
DATA/PANEL_6
DATA/PANEL_7
DATA/PANEL_8
DATA/PANEL_9
DATA/PATIENT
DATA/PATIENT_SAVE
DATA/PATIENT_VIRTUAL
DATA/PATTERN
DATA/REJECTED
DATA/RULES
DATA/VECTOR
IMAGES
PARAMETERS
REPORT
REPORT/IMAGES
REPORT/template
RESULTATS
main.py
analysis.py
cytokines.py
exemple.py
fcsAnalysis.py
machineLearning.py
patternMining.py
preprocessing.py
procedure.py
README.md
reorder.py
report.py
test.py
trashlib.py
-
program_size
print the number of lines in the program -
build_cytokines_data
run a few functions in order to prepare the cytokines data for analysis- Create the patient index file
- Create the matrix from cytokines data
- format the matrix (drop the OMICID)
- split matrix into quantitative and others values
-
describe_autoantibodies run a procedure to plot the actual number of patient postive and negative
for the autoantibodies.
diagnostic could be pick among the list:- Control
- RA
- MCTD
- PAPs
- SjS
- SLE
- SSc
- UCTD
Could be a combinaison (list) of the terms, could be set to "all" (i.e a list of all terms)
Could be set to "overview" and display % values instead of raw count.
Display is a boolean, 1 to see the negative count AND the positive count, 0 for only the positive count
-
process_associationRules
Filter, format (clp format) and translate association rules. -
describe_discrete_variable <variable_name>
plot the proportion of NA data for this variable, and enumerate the possible values.
variable_name can be in the form pX or can be the real name of the variable (e.g \Clinical\Symptom\ABNORMINFLAM)