The goal of idmc is to provide easy access and wrangling of displacement data stored in the Internal Displacement Monitoring Centre’s (IDMC) displacement database. The data is retrieved from the Internal Displacement Update API.
You can install idmc from CRAN:
install.packages("idmc")
Alternatively, you can install the development version of idmc from GitHub with:
# install.packages("devtools")
devtools::install_github("OCHA-DAP/idmc")
You need an IDMC endpoint URL to access the API. These are provided by
IDMC. The easiest way to save the URL for use in your R sessions is by
using usethis::edit_r_environ()
and adding the variable there as:
IDMC_API="Insert API URL here"
library(idmc)
The simple use for the idmc
package is to retrieve the data from the
API directly into R.
df <- idmc_get_data()
df
#> # A tibble: 20,289 × 26
#> id country iso3 latitude longitude centroid displacement_type qualifier
#> <int> <chr> <chr> <dbl> <dbl> <chr> <chr> <chr>
#> 1 120233 United … USA 31.1 -93.2 [31.114… Disaster total
#> 2 120186 United … USA 39.1 -94.5 [39.092… Disaster total
#> 3 120191 United … USA 44.9 -123. [44.912… Disaster total
#> 4 120197 Dominic… DOM 19.3 -70.0 [19.281… Disaster total
#> 5 120195 Dominic… DOM 19.3 -70.0 [19.281… Disaster total
#> 6 120110 France FRA 44.5 6.47 [44.498… Disaster more than
#> 7 120124 Indones… IDN -7.46 109. [-7.458… Disaster total
#> 8 120188 United … USA 30.7 -93.5 [30.706… Disaster total
#> 9 120208 Viet Nam VNM 22.8 105. [22.779… Disaster total
#> 10 120047 Philipp… PHL 6.85 124. [6.8514… Disaster total
#> # ℹ 20,279 more rows
#> # ℹ 18 more variables: figure <int>, displacement_date <date>,
#> # displacement_start_date <date>, displacement_end_date <date>, year <int>,
#> # event_name <chr>, event_start_date <date>, event_end_date <date>,
#> # category <chr>, subcategory <chr>, type <chr>, subtype <chr>,
#> # standard_popup_text <chr>, event_url <chr>, event_info <chr>,
#> # standard_info_text <chr>, old_id <chr>, created_at <date>
This data frame, with variables described in the API
documentation,
includes 1 row per event. We can normalize this to daily displacement,
assuming uniform distribution of displacement between start and end
date, for all countries and type of displacement.
idmc_transform_daily()
.
idmc_transform_daily(df)
#> # A tibble: 71,750 × 5
#> iso3 country displacement_type date displacement_daily
#> <chr> <chr> <chr> <date> <dbl>
#> 1 AB9 Abyei Area Conflict 2020-01-20 600
#> 2 AB9 Abyei Area Conflict 2020-01-21 600
#> 3 AB9 Abyei Area Conflict 2020-01-22 600
#> 4 AB9 Abyei Area Conflict 2020-01-23 600
#> 5 AB9 Abyei Area Conflict 2020-01-24 600
#> 6 AB9 Abyei Area Conflict 2020-01-25 600
#> 7 AB9 Abyei Area Conflict 2020-01-26 600
#> 8 AB9 Abyei Area Conflict 2020-01-27 600
#> 9 AB9 Abyei Area Conflict 2020-04-13 260
#> 10 AB9 Abyei Area Conflict 2022-02-10 9937.
#> # ℹ 71,740 more rows
While there are a few other parameters you can play around with in these functions, this is the primary purpose of this simple package.