Skip to content

[CIKM'24] Reviving the Context: Camera Trap Species Classification as Link Prediction on Multimodal Knowledge Graphs

License

Notifications You must be signed in to change notification settings

OSU-NLP-Group/COSMO

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

COSMO

[CIKM'24] Reviving the Context: Camera Trap Species Classification as Link Prediction on Multimodal Knowledge Graphs

Paper: https://arxiv.org/pdf/2401.00608.pdf

Project webpage: https://osu-nlp-group.github.io/COSMO/

Authors: Vardaan Pahuja, Weidi Luo, Yu Gu, Cheng-Hao Tu, Hong-You Chen, Tanya Berger-Wolf, Charles Stewart, Song Gao, Wei-Lun Chao, and Yu Su

Installation

pip install -r requirements.txt

Data Preprocessing

iWildCam2020-WILDS

bash preprocess_iwildcam.sh

Note: The dir. data/iwildcam_v2.0/train/ contains images for all splits.

Snapshot Mountain Zebra

  1. Download snapshot_mountain_zebra.zip from this link and uncompress it into a directory data/snapshot_mountain_zebra/.
  2. Download images using the command gsutil -m cp -r "gs://public-datasets-lila/snapshot-safari/MTZ/MTZ_public" data/snapshot_mountain_zebra/
  3. Run bash preprocess_mountain_zebra.sh

Training

Note: The below commands will use the DistMult model by default. Use the following hyperparameter configuration:

  • For iWildCam2020-WILDS, set DATA_DIR to data/iwildcam_v2.0/, IMG_DIR to data/iwildcam_v2.0/train/, and DATASET to iwildcam
  • For Snapshot Mountain Zebra, set DATA_DIR to data/snapshot_mountain_zebra/ and IMG_DIR to data/snapshot_mountain_zebra/, and DATASET to mountain_zebra.
  • For ConvE, use --kg-embed-model conve --embedding-dim 200 in args.

Image-only model (ERM baseline)

python -u run_image_only_model.py --data-dir DATA_DIR --img-dir IMG_DIR --save-dir CKPT_DIR > CKPT_DIR/log.txt

COSMO, no-context baseline

python -u main.py --data-dir DATA_DIR --img-dir IMG_DIR --save-dir CKPT_DIR > CKPT_DIR/log.txt

COSMO, taxonomy

python -u main.py --data-dir DATA_DIR --img-dir IMG_DIR --save-dir CKPT_DIR --add-id-id > CKPT_DIR/log.txt

COSMO, location

python -u main.py --data-dir DATA_DIR --img-dir IMG_DIR --save-dir CKPT_DIR --add-image-location > CKPT_DIR/log.txt

COSMO, time

python -u main.py --data-dir DATA_DIR --img-dir IMG_DIR/ --save-dir CKPT_DIR --add-image-time > CKPT_DIR/log.txt

COSMO, taxonomy + location + time

python -u main.py --data-dir DATA_DIR --img-dir IMG_DIR --save-dir CKPT_DIR --add-id-id --add-image-time --add-image-location > CKPT_DIR/log.txt

MLP-concat baseline

python -u run_kge_model_baseline.py --data-dir DATA_DIR --img-dir IMG_DIR --save-dir CKPT_DIR --embedding-dim 512 --use-subtree --only-hour --time_input_dim 1 --early-stopping-patience 10 > CKPT_DIR/log.txt

Evaluation

Evaluate a model (specify split)

python eval.py --ckpt-path <PATH TO COSMO CKPT> --split test --data-dir DATA_DIR --img-dir IMG_DIR

Error Analysis

Taxonomy analysis

cd gen_utils/
python analyze_taxonomy_model.py --data-dir DATA_DIR --img-dir IMG_DIR --ckpt-1-path <PATH TO COSMO+TAXONOMY CKPT> --ckpt-2-path <PATH TO COSMO BASE CKPT>

Plot location correlation analysis

cd gen_utils/
python analyze_img_loc.py --data-dir DATA_DIR

Plot time correlation analysis

cd gen_utils/
python analyze_img_time.py --data-dir DATA_DIR

Under-represented Species Analysis

Dump predictions for baseline image-only model

cd gen_utils/
python dump_imageonly_pred_specie_wise.py --ckpt-path <PATH TO IMAGE-ONLY MODEL> --split test --out-dir <OUT DIR>

Dump predictions for COSMO model

cd gen_utils/
python dump_kge_pred_specie_wise.py --ckpt-path <PATH TO COSMO MODEL> --split test --out-dir <OUT DIR>

Compare performance for under-represented species

cd gen_utils/
python eval_kge_specie_wise.py --y-pred-path-1 <PATH TO PREDICTIONS JSON FILE OF BASELINE MODEL> --y-pred-path-2 <PATH TO COSMO PREDICTIONS JSON FILE>

Citation

@inproceedings{10.1145/3627673.3679545,
author = {Pahuja, Vardaan and Luo, Weidi and Gu, Yu and Tu, Cheng-Hao and Chen, Hong-You and Berger-Wolf, Tanya and Stewart, Charles and Gao, Song and Chao, Wei-Lun and Su, Yu},
title = {Reviving the Context: Camera Trap Species Classification as Link Prediction on Multimodal Knowledge Graphs},
year = {2024},
isbn = {9798400704369},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi-org.proxy.lib.ohio-state.edu/10.1145/3627673.3679545},
doi = {10.1145/3627673.3679545},
booktitle = {Proceedings of the 33rd ACM International Conference on Information and Knowledge Management},
pages = {1825–1835},
numpages = {11},
keywords = {KG link prediction, camera traps, multimodal knowledge graph, species classification},
location = {Boise, ID, USA},
series = {CIKM '24}
}

About

[CIKM'24] Reviving the Context: Camera Trap Species Classification as Link Prediction on Multimodal Knowledge Graphs

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published